

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # Accounting in BTCPay

BTCPay Server offers several tools that make cryptocurrency bookkeeping easier.

Invoice Export

![Invoice exporting in BTCPay Server](./img/BTCPayInvoiceExport.png “Invoice exporting in BTCPay Server”)

To export the invoices, go to Invoices > Export invoices, select the export format (CSV/JSON) and download the file. You can then customize the fields to fit your business needs and import the data into your accounting software, or create pivot tables from the exported data.

The fields are the following:

Field name | Description |

:-:	—
ReceivedDate	Date the payment has been received
StoreId	The store receiving the payment
OrderId	The order Id of the invoice
InvoiceId	The invoice ID
InvoiceCreatedDate	Date of creation of the invoice
InvoiceExpirationDate	Date of expiration of the invoice
InvoiceMonitoringDate	Date your BTCPay Server ceases to monitor events of the invoice
PaymentId	Unique identifier of a payment
Destination	The destination address the customer paid to
PaymentType	The type of payment (OnChain, Offchain)
CryptoCode	Currency code of the method of payment (e.g. BTC)
Paid	Amount paid in the currency defined in CryptoCode
NetworkFee	[Network fee](./FAQ/Stores.md#add-network-fee-to-invoice-vary-with-mining-fees) paid by the user in this payment
ConvertionRate	The conversion rate at the time of invoice creation between CryptoCode and InvoiceCurrency
InvoiceCurrency	The currency code of the invoice (e.g. USD)
InvoiceDue	The amount still due to fully pay the invoice after this payment (minus NetworkFee, denominated in InvoiceCurrency)
InvoicePrice	The total price of the invoice (minus Network Fee, denominated in InvoiceCurrency)
InvoiceItemCode	The item code afferent to the products/services billed by the invoice
InvoiceItemDesc	The item description afferent to the products/services billed by the invoice
InvoiceFullStatus	The full status of the invoice (e.g. expired (paidPartial))
InvoiceStatus	The simplified status of the invoice (e.g. expired)
InvoiceException	The status of the invoice (e.g. paidPartial)

QuickBooks Online Connector for BTCPay Server

BTCQBO is a third-party plugin that enables QuickBooks Online users to connect their BTCPay server easily. Besides bookkeeping, users can quickly generate invoices from their QuickBooks. For more information about the BTCQBO and all the features it offers, [check the plugin repository](https://github.com/JeffVandrewJr/btcqbo) or watch the video below.

[![BTCPay Server QuickBooks](https://img.youtube.com/vi/srgwL9ozg6c/mqdefault.jpg)](https://www.youtube.com/watch?v=srgwL9ozg6c “BTCPay Server QuickBooks”)

 —
description: Apps allow users an easy way to extend BTCPay Server.
tags:
- BTCPay Server
- Apps
- Point of Sale
- Crowdfunding
- Payment Button
—
BTCPay Server Apps

The primary purpose of BTCPay Server is to remove dependencies on trusted third-parties. The Apps are built in applications that obsolete central-authorities and allow users an easy way to extend the [use case](./UseCase.md) of the software. Users can self-host all sorts of customizable applications that work out of the box.

To create an app, go to Apps > Create a new app. Apps are store-dependent, which means that each app needs to be connected to a store.

Point of Sale App

The web-based PoS app allows users with brick and mortar stores to readily accept cryptocurrencies without fees or a third-party, directly to their wallet. The PoS can be displayed easily on tablets or any other devices which support web browsing. Users can easily create a homescreen shortcut for a quick access to the web-app.

![BTCPay Pos](./img/BTCPayPointOfSale1.jpg “BTCPay Pos”)

Adding new products is easy. The app has a shopping cart feature, tips, product inventory, custom payment options and more.

The Point of sale app can also be used to receive donations, tips or even as a small e-commerce shop, depending on the options or customizations applied.

Curently, the Point of Sale app supports three different views:
* A Static view representing only the items for sale.
* A Cart view including items for sale and a cart for checkout.
* A Light view consisting only of a keypad for easy and quick payments (Starting from [v1.0.5.6](https://blog.btcpayserver.org/btcpay-server-1-0-5-6/#simplePOS)).

To get your first Point of Sale app running, follow theses few simple steps:

	Go to Apps and Create a new app

	Add a name for your app

	Choose app type > Point Of Sale

	Select the store to associate with the app.

	Customize your PoS by choosing a view (Static, Cart, Light), adding your own items with prices, photos, and a description.

	Click Save Settings.

	Click View App to view your PoS (Your customers can access the PoS through that link).

You can change the appearance of your Point of Sale app by following the [theme customization guide](./Development/Theme.md).

Crowdfunding App

Crowdfunding is an application which you can launch from BTCPay Server interface that allows you to create a self-hosted funding campaign, similar to Kickstarter or Indiegogo. Unlike traditional crowdfunding platforms, the creator of the campaign is the owner of the platform. Funds go directly to the creator’s wallet without any fees.

	Go to > Apps

	Add a name of your app

	Choose app type > Crowdfund

	Select the store to associate with the app.

	Customize your Crowdfund by adding your own perks with prices, photos, and description.

	Check the box > Allow crowdfund to be publicly visible

	Click “Save Settings”.

	Click “View App” to view your Crowdfund (Contributors can access the crowdfund through that link).

[![BTCPay Server Crowdfunding](https://img.youtube.com/vi/tFbfyneDj88/mqdefault.jpg)](https://www.youtube.com/watch?v=tFbfyneDj88 “BTCPay Server Crowdfunding”)

If you would like to provide digital or physical products to the backers of your crowdfunding campaign, you can [integrate WooCommerce store into it](./FAQ/Apps.md#how-to-integrate-woocommerce-store-into-a-btcpay-crowdfund-app). You can also set limits on contribution perks using the inventory feature.

Payment Button

Easily-embeddable HTML and highly-customizable payment buttons allow users to receive tips and donations. Online stores can also integrate payment buttons. When a site visitor clicks on the button, BTCPay displays the invoice.

	Go to > Store > Settings > Pay Button

	Allow anyone to create invoices

	Customize your button

	Copy the generated form and embed it on your website.

[![BTCPay Server Payment Buttons](https://img.youtube.com/vi/MIWGvl6_WzI/mqdefault.jpg)](https://www.youtube.com/watch?v=MIWGvl6_WzI “BTCPay Server Payment Button”)

Lightning Network Apps (Lapps)

[Lapps](https://blockstream.com/2018/03/29/blockstreams-week-of-lapps-ends/) are applications built on top of [Lightning Charge](https://blockstream.com/2018/01/16/lightning-charge/), a complimentary package that enables easier development on top of c-lightning. If you decided to use c-lightning, you could easily connect your BTCPay to any of the Lapps.

BTCPay exposes all the necessary information required to connect your internal BTCPay c-lightning node to a Lightning Network App. Go to Server Settings > Services > Lightning charge server > See information > Credentials.

Below are videos that showcase how to connect some of the lapps to BTCPay.

[![c-lightningbtcpay1](https://img.youtube.com/vi/6EHNq1anD1k/mqdefault.jpg)](https://www.youtube.com/watch?v=6EHNq1anD1k “BTCPay Server - c-lightning and lapps intro”)

[![c-lightningbtcpay2](https://img.youtube.com/vi/ZbM3jcxau0o/mqdefault.jpg)](https://www.youtube.com/watch?v=ZbM3jcxau0o “BTCPay Server - c-lightning and lapps publisher”)

[![c-lightningbtcpay3](https://img.youtube.com/vi/EYrsU3LGpbI/mqdefault.jpg)](https://www.youtube.com/watch?v=EYrsU3LGpbI “BTCPay Server - c-lightning and lapps woo lightning”)

 # BTCPay Server vs. Others

![BTCPay Server vs other payment processors](./img/infographics/BTCPay-How-Is-It-Different.png “BTCPay Server vs other payment processors”)

Most new merchants will likely only consider the price of the service. Since BTCPay Server is free, that may have led you here and if so, welcome.

BTCPay Server is code, not a company. There is no third-party between a merchant and a customer. The merchant is always in full control of their funds. There are no processing or subscription fees. BTCPay Server is free to use and completely open-source, so developers or security auditors can always inspect the quality of the code.

We want users to understand not only BTCPay Server, but also how payments can be processed on behalf of a merchant. In order to help users understand trade-offs when using various cryptocurrency payment processing methods. We don’t know which payment processors provide which services. That will need to be part of your own research. The following list is a good place to start:

	[BTCPay Server vs. Others](#btcpay-server-vs-others)
- [Features](#features)
- [Cost](#cost)
- [Security](#security)
- [Privacy](#privacy)
- [Censorship-Resistance](#censorship-resistance)
- [Decentralized](#decentralized)
- [Fiat](#fiat)
- [Can’t find this information for other payment processors?](#cant-find-this-information-for-other-payment-processors)

Features

Every payment processor has features, here are some BTCPay Server features:

	Free & Peer to Peer - Direct, peer-to-peer payments. No merchant processing fees. No transaction fees (other than the [network fee](https://en.bitcoin.it/wiki/Miner_fees)).

	Self-hosted - Your node, your coins. No middleman. No KYC/AML. Non-custodial (complete control over the private key). [Hardware wallet integration](./HardwareWalletIntegration.md) support.

	Bitcoin & Altcoins - Accept Bitcoin natively. Opt-in [altcoin](./FAQ/Altcoin.md) integrations.

	Cutting-edge - Native Segwit support. Rapid Bitcoin microtransactions using the Lightning Network (LND, c-lightning, Eclair and Ptarmigan).

	CMS Integrations - Wordpress & WooCommerce, Shopify, Drupal, Magneto, Prestashop and custom integrations.

	Apps - Point-Of-Sale interface for physical stores. Crowdfunding interface for donation goals and fundraisers.

	Payment Buttons - Easy-embeddable HTML donation and pay buttons.

	Unlimited Stores - Merchants can process payments for their own stores, or for others.

	Translations - Customers can pay in 20+ different languages.

	Payment Requests - Create & send a long-lived invoice requesting payment for goods or services.

	Privacy & Security focused - Payjoin support. Tor support.

	BitPay compatible - Fully compatible with BitPay API. Easy migration to BTCPay Server.

Cost

It’s important to note that payments made using the Bitcoin Network always require a transaction (miner) fee for it to be included in the blockchain. The Bitcoin Network determines if the transaction is authorized and when it is confirmed.

BTCPay Server creates direct payment invoices for merchants to provide to their customers. It also monitors the blockchain and stores the confirmation status of each payment or donation. To do this BTCPay Server requires being hosted on a server which merchants can deploy on their own hardware, purchase a VPS (less than $10/mo), or use someone else’s BTCPay Server instance to host your account (free or paid options).

If you deploy BTCPay Server using a VPS, the following types of fees are never charged:

	Merchant fees

	Subscription fees

	Transfer fees

	Software fees

Security

First rule of Bitcoin is always keep your private keys private. Using a secure wallet is recommended for new merchants as the only provider (creator) of private keys. If there is a chance that someone else (such as a website) knows, stores, or provides your private keys to you, it’s generally accepted that they are not actually private.

Privacy

BTCPay Server will never ask a merchant for any personal identification.

Typically, when converting to or from fiat on behalf of a merchant, payment processors are required to collect personal information for Know Your Customer (KYC) and Anti-money laundering (AML) banking requirements. This may include personal information such as passport ID, phone number, address, bank account, etc.

Fortunately, the Bitcoin Network does not use or collect these types of personal information, and therefore neither does BTCPay Server.
How BTCPay Server ensures privacy:

	No middleman involved.

	Information is shared between customer and seller only.

	Self-hosted users [run a full node][5].

	No address re-use.

	Tor support

	[Payjoin](./Payjoin.md) support

Censorship-Resistance

BTCPay Server is Censorship-Resistant. Nobody controls it except for the user running it. No central point of failure.
BTCPay Server can be run on a users’ own hardware.

Decentralized

Many payment processors claim to have no middleman. They claim that funds go directly to your wallet or that they offer instant settlement.
However, if a processor makes any of the following claims, they are most likely operating as a middleman:

	Waiting time for a merchant to receive payment is longer than sufficient blockchain confirmation.

	The payment processor combines customer payments before sending to the merchant’s wallet.

	If there are any kind of limits on transaction volume for the merchant.

	If the payment processor can decline, reject or alter a payment after being sent from a customer’s wallet.

	If the payment processor has terms and conditions stating they can hold or freeze your account.

	Fees for using the payment processor are automatically taken out from the customer’s payment to the merchant.

Payment processors are able act as middlemen by using custodial wallets. A payment processor can use an internal custodial wallet for altering customer payments before routing them to merchants. This is how they can collect fees, hold payments for verification and processing, etc. This type of wallet is an intermediary between the merchant wallet and the customer wallet. It’s the middleman wallet.

The payment processor may also provide a custodial wallet for the merchant to use. As mentioned above, this is advised against because your private keys may be compromised. If they claim to not save your private keys after giving them to you, it’s likely you will not know the truth until it’s too late. Centralized services may seem like an easier solution for the merchant. Unfortunately the trade-off is sacrifices in privacy, security and self-sovereignty which is normally obtained using the Bitcoin Network.

That’s why BTCPay Server was created. To help merchants remove third party dependencies and simply use the Bitcoin Network freely and securely. Merchants have their own copy of the BTCPay Server software which runs on their own server or VPS of their choice and validates their own payments using their own node. It’s a self-hosted Peer-to-Peer payment processor. The trade-off in this case is some technical understanding is required for initial setup.

As the BTCPay Server community continues to grow, more deployment methods, use cases and tutorials are continually being added to make it easier for non-technical users. BTCPay Server is completely open source. Anyone can join the community to suggest or create improvements, features, guides, etc. Feedback is always welcome.

Fiat

Currently, BTCPay Server is a processor without fiat conversion capabilities out of the box. As a merchant, this may be a difficult if business costs require fiat. Not providing fiat conversion out of the box allows BTCPay Server merchants to avoid KYC and AML identification verification. This also allows BTCPay Server to be free and available for anyone to use.

However, a fiat conversion plugin is available for BTCPay Server. Since merchants are always the owners of their private keys, they can always freely convert their coins manually, but for now there’s no instant-fiat conversion. More info on the [Transmuter](https://github.com/btcpayserver/btcTransmuter).

Can’t find this information for other payment processors?

	It’s probably a feature not a bug!

	All of this information should be available to merchants.

	Checkout the [Awesome Payment Processor List](https://github.com/alexk111/awesome-bitcoin-payment-processors)

	If you have more questions about BTCPay Server, read our [Official Documentation][7].

[1]: https://github.com/bitcoin/bips/blob/master/bip-0021.mediawiki
[2]: https://github.com/bitcoin/bips/blob/master/bip-0070.mediawiki
[3]: https://github.com/bitcoin/bitcoin/pull/14451
[4]: https://mainnet.demo.btcpayserver.org/translate
[5]: https://en.bitcoin.it/wiki/Why_Your_Business_Should_Use_a_Full_Node_to_Accept_Bitcoin
[6]: https://howtoacceptcrypto.com/chart/
[7]: https://docs.btcpayserver.org/

 # Connecting Coldcard Wallet to BTCPay Server

This document shows how to use a Coldcard Wallet with your BTCPay Server.

Coldcard Wallet Setup

This guide assumes, you have a Coldcard wallet set up. To configure the Coldcard, please see the [quick setup guide on manufacturer’s website](https://coldcardwallet.com/docs/quick).

Quick Setup

	Insert the MicroSD card into the Coldcard wallet.

	Go to Advanced > MicroSD Card > Electrum Wallet > Native-Segwit

	Insert the MicroSD card back into your PC

	In BTCPay Server, Stores > Settings > Setup > Connect an existing wallet > Import wallet file

	Choose File > select the wallet file earlier exported from Coldcard.

	Click Continue

	Confirm the addresses match the ones shown in your BTCPay Server.

The Coldcard is now connected to your BTCPay Server. Payments go directly to Coldcard. The video below shows how to connect your BTCPay store to your Coldcard.

[![BTCPay and Coldcard](https://img.youtube.com/vi/N0eVwdP_7EQ/mqdefault.jpg)](https://www.youtube.com/watch?v=N0eVwdP_7EQ “Connecting Coldcard to BTCPay Server”)

Spending from BTCPay Server wallet with Coldcard (PSBT)

Once there are some funds in received to your BTCPay Wallet connected to Coldcard, you can spend them by using [PSBT](https://github.com/bitcoin/bitcoin/blob/master/doc/psbt.md#psbt-in-general) (Partially Signed Bitcoin Transactions). This allows completely offline signing of your transactions, without ever having to connect your hardware wallet to the internet.

	Wallets > Manage > Send

	Fill in destination address and the amount

	Click on the Sign with a wallet supporting PSBT button.

	You will be redirected to PSBT tab, with pre-filled information, click on the Sign with a wallet supporting PSBT (save as file)

	Save the file onto MicroSD card

	Insert MicroSD into your Coldcard.

	In Coldcard, click on the Ready To Sign

	Review the transaction information, and click OK button to sign it.

	Transaction will be saved onto MicroSD.

	In BTCPay, go to PSBT tab of the wallet and upload the signed PSBT file.

	Click Decode

	Click Other Actions and select Review

	Review your transactions and click Broadcast to broadcast it on the network.

The video below shows how to connect your BTCPay store to your Coldcard.

[![BTCPay Server and Coldcard](https://img.youtube.com/vi/oK0h-76Giaw/mqdefault.jpg)](https://www.youtube.com/watch?v=oK0h-76Giaw “PSBT Coldcard and BTCPay Server”)

 # Community

This project is nothing without its community!

Join us:

[![Mattermost](./img/mattermost.png “Mattermost”)](https://chat.btcpayserver.org/)
[![Twitter](./img/twitter.png “Twitter”)](https://twitter.com/BtcpayServer)
[![Github](./img/github.png “GitHub”)](https://github.com/btcpayserver/btcpayserver)
[![Telegram](./img/telegram.png “Telegram”)](https://t.me/btcpayserver)

 ## Connect an existing wallet

![Import Existing Wallet](./img/createwallet/ImportWallet.png)

By using an existing wallet, you can receive payments to the external wallet, without BTCPay Server knowing the wallet’s private key. If a malicious attacker hacked your server and obtained the xpub, they could observe your transaction history, but cannot access the funds.

	[Connect hardware wallet (Recommended)](#connect-hardware-wallet)

	[Import Wallet file (Recommended)](#import-wallet-file)

	[Enter extended public key](#enter-extended-public-key)

	[Scan wallet QR code](#scan-wallet-qr-code)

	[Enter wallet seed (Not Recommended)](#enter-wallet-seed)

Connect hardware wallet

Hardware wallets provide a good balance between security and ease of use. If you already have a hardware wallet set up, you can easily use it with your BTCPay Server. Thanks to built-in [hardware wallet integration](HardwareWalletIntegration.md) the xpub key from the hardware wallet is automatically added to your BTCPay Server. The integration further allows you to spend funds received to your store within BTCPay’s [internal wallet](./Wallet.md).

:::tip
If you own a hardware wallet, follow the instructions on how to [use a an existing hardware wallet with your BTCPay Server](HardwareWalletIntegration.md)
::

Import Wallet file

Using an existing software wallet assumes that you already have an external wallet created and backed up. In theory, any mobile/desktop wallet that provides an extended public key should work, however, most wallets have technical limitations [(gap-limit)](./FAQ/Wallet.md#missing-payments-in-my-software-or-hardware-wallet) that may cause serious user-experience problems for you later on.

For that reason, we recommend that you only use software wallets listed below.

	[Electrum Wallet](./ElectrumWallet.md)

	[Wasabi Wallet](./WasabiWallet.md)

Click on the links above and you will be redirected to a step by step tutorial on how to set up each particular software wallet with BTCPay Server.

To spend and manage the funds received to your external software wallet, you can use the [internal BTCPay Wallet](./Wallet.md) and sign a transaction with your private key or simply manage the funds in that external wallet itself.

Enter extended public key

This option can be useful if you want to modify [legacy wallet addresses](./FAQ/General.md#what-if-i-have-a-problem-paying-an-invoice) or if your wallet type is not compatible with the Hardware Wallet Integration (Vault).

This method requires you to configure your wallet connection manually and should only be used if you have a good understanding of wallet extended public keys, account key paths and master fingerprints.

Scan wallet QR code

Some wallets allow you to create a wallet and export the extended public key (xPub) using a QR Code. You can easily connect your BTCPay Server to these types of wallets with the scan QR code option. The common [(gap-limit)](./FAQ/Wallet.md#missing-payments-in-my-software-or-hardware-wallet) issue is likely to occur using any xPub, unless the wallet provider has a way to adjust it.

To spend and manage the funds in your [internal BTCPay Wallet](./Wallet.md) you will need to provide the private key (used to generate the xpub QR Code) during transaction signing or simply receive funds through your BTCPay and manage the funds in the external wallet.

Enter wallet seed

This option is useful if you have no other way of spending funds in a certain wallet. Such as an altcoin wallet that was previously compatible with the hardware wallet integration but no longer is. In general you should never type wallet seed words on any internet connected device.

This method requires you to configure your wallet connection manually and should only be used if you have a good understanding of wallet formats, extended public keys, account key paths and master fingerprints.

 # (2) Create a store

Creating a Store in BTCPay Server

Inside BTCPay Server, an unlimited number of stores can be created. Each store needs to be [connected to a wallet](./WalletSetup.md), can have apps (Point of Sale, Payment Buttons and Crowdfunding) attached to it, or be paired with external e-commerce software through one of many available integrations.

To create a store, make sure you’re logged in into your account, and go to > Stores in the upper navigation menu. Click on the create a new store button. Enter the store name into the text field and click Create.

![BTCPayRegister2](./img/BTCPayGettingStartedStoreRegistration1.jpg “Create a new store in BTCPay Server”)

Customizing your BTCPay Store Settings

Store > Settings provides basic control over the individual store settings. Modify the confirmations, invoice expiry and more. For more information, check [Stores FAQ](./FAQ/Stores.md).

Proceed to the next step - [Connecting a Wallet](./WalletSetup.md).

 ## Create a new wallet

	[Hot Wallet](#hot-wallet)

	[Watch-only wallet](#watch-only-wallet)

Hot Wallet
![Create Wallet](./img/hotwallet/HotWallet.png)

If you do not have an existing wallet, you can generate a new one within your BTCPay Server. Whether you have an existing wallet or not, the quickest way to get a wallet connected to your store is to create a new wallet. You can always replace it with an alternative wallet after receiving a few small payments to your server, if you just want to get your store ready quickly.

This type of wallet is also necessary to use features such as [Payjoin](./Payjoin.md) and [Liquid](https://github.com/btcpayserver/btcpayserver/issues/1282).

Requirements to create wallets

If are using a [third-party host](/Deployment/ThirdPartyHosting.md), this option needs to be explicitly enabled by the server admin. Generating a new wallet in an environment you are not sure is trustworthy, is discouraged.

By default, you need to be a server admin to use the create wallet feature. This is because server admins are able to extract the private key easily. If for some reason (such as allowing individuals that trust you enough with their store), you can enable the hot wallet for non-admins from Server Settings > Policies > “Allow non-admins to create hot wallets for their stores”.

Understand that anyone with access to your recovery seed can also access and steal all your funds (current AND future funds!), since a private key is derived from a recovery seed. Securely back up your seed by writing it down and keep it in a safe place. Do not photograph it or store it in a digital format. Do not rely solely on your server for storing your recovery seed, always keep a backup copy.

![BTCPay Server settings](./img/hotwallet/ServerSettings.png “BTCPay Server settings”)

:::warning
When a new wallet is generated, BTCPay Server will show you a twelve word recovery seed. After the initial display, the recovery seed is wiped from the server, unless a the hot wallet option is enabled.
::

Spending funds with BTCPay Hot Wallet

Once you’ve received funds to your wallet and you decide to spend them, you can sign the transaction automatically, all inside BTCPay Server.

	In BTCPay Server, go to > Wallets > Manage > Send

	Fill in the Destination address and the Amount

	Select Sign the hot wallet

	Review the transaction

	Broadcast the transaction

![BTCPay Server Send tab](./img/hotwallet/WalletSend.png “BTCPay Server Send tab”)

Security Implications

Storing private keys on a public server comes with risks. This is similar to the risks of running and using the [Lightning Network](./LightningNetwork.md) (except that you can recover funds with a backup).
Please, ALWAYS be sure to back up any seed that is generated by this feature and to never leave money you cannot afford to lose spendable by those private keys.

Reducing risk

As mentioned above, the create wallet functionality includes risk of funds being stolen in the case of the server or account being compromised. To mitigate this risk, we advise you to:

	Enable two factor or U2F authentication

	Occasionally move funds to your cold storage either manually or by configuring [BTC Transmuter](https://github.com/btcpayserver/btcTransmuter/blob/master/README.md) with automatic payment forwarding.

:::danger
Do not give anyone else access to your server’s SSH keys or server account credentials when using a hot wallet. Anyone with access to your account can spend the funds from your hot wallet. If you need to allow account access to employees, developers, etc. use an [existing wallet](ConnectWallet.md#connect-an-existing-wallet) instead.
::

Watch-only wallet

Similar to the hot wallet, the watch-only wallet can get your store connected to a wallet instantly. In contrast, this option does not store the private keys on the server. As a result the wallet becomes “watch-only” for any received funds.

In order to spend the funds you would need to manually provide your seed words each time. Alternatively you can spend funds in another external wallet where you have imported your BTCPay Server produced seed words. Be sure to consider the [gap limit issue](./FAQ/Wallet.md#missing-payments-in-my-software-or-hardware-wallet) if you’re using an external wallet with your watch-only wallet.

 # Using the BTCPay API for Custom Integration

BTCPay Server provides 2 APIS in order to integrate with it:

	[GreenField API](/Development/GreenFieldExample.md) - A RESTful API that aims to allow you to use BTCPay Server headless. This is the recommended API for projects which do not wish to recycle code from a Bitpay integration.

	Bitpay Invoice API - BTCPay implements the same API as Bitpay for creating and managing invoices.

Migrating from BitPay to BTCPay normally is as easy as changing a URL.

While Bitpay only allows one account for one merchant, BTCPay allows a user to manage multiple stores.

Official Client Libraries

BTCPay maintains official client libraries for [C#](https://github.com/MetacoSA/NBitpayClient), [Python](https://github.com/btcpayserver/btcpay-python) and [NodeJS](https://github.com/btcpayserver/node-btcpay).

In addition, there are forked repositories of Bitpay’s [PHP](https://github.com/btcpayserver/btcpayserver-php-client) and [Ruby](https://github.com/bitpay/ruby-client) clients.

Accessing the API Manually

If not using one of the libraries above, the REST API can be accessed manually.

The authentication mechanism is using BitId.

With BitId, the client of the API (like an e-commerce plugin) generates a private key, then informs the server (BTCPay) about the public key.

Every requests to the API sent by the client is signed with the client’s private key.

We call pairing the process to inform BTCPay about your public key.

Pairing process

Your first need to create a new store:

	Log in

	Go to Stores menu

	Click on Create a new store

	Enter a friendly name for the store, validate.

There is two method of pairing, client side pairing and server side pairing.

Client side pairing

With client side pairing, the client generates a URL from their public key which a human user can browse to validate the pairing.

Typically the URL looks like https://btcpay.example.com/api-access-request?pairingCode=<pairingcode_goes_here>.

You can find documentation about how to achieve this with [this link](https://support.bitpay.com/hc/en-us/articles/115003001183-How-do-I-pair-my-client-and-create-a-token-).

Server side pairing

The second way, is to generate your private key via some bitcoin library then:

	Go to the store’s settings

	Click on Access tokens

	Click on Create new Token

	Select merchant’s facade and enter your public key,

	Click request pairing

	Click on Approve

Note

BTCPay Server has an API compatible with Bitpay; changing your e-commerce application from Bitpay to BTCPay should take minimal effort.

You can read the full API documentation [on Bitpay’s website](https://bitpay.com/api#resource-Invoices).

There is only one difference: Bitpay only allows one account for one merchant, BTCPay allows a user to manage multiple stores.

Modal Checkout

To generate a pop-up modal experience:

	Include the btcpay.js script in your html page

`html
<script src ="https://your.btcpay.url/modal/btcpay.js"></script>
`

	Call the invoice API to generate an invoice (example code). This is sample backend code as it contains an auth token that should not be exposed in your front-end.


```js
const axiosClient = axios.create({


baseURL: BTCPAY_URL,
timeout: 5000,
responseType: ‘json’,
headers: {


‘Content-Type’: ‘application/json’,
‘Authorization’: BTCPAY_AUTH




}




});


	const invoiceCreation = {
	“price”: 12345,
“currency”: “USD”,
“orderId”: “something”,
“itemDesc”: “item description”,
“notificationUrl”: “https://webhook.after.checkout.com/goeshere”,
“redirectURL”: “https://go.here.after.checkout.com”





};

const response = await axiosClient.post(“/invoices”, invoiceCreation);
const invoiceId = response.data.data.id;
```


	Use the invoiceId to pop up the modal

`js
window.btcpay.showInvoice(invoiceId);
`

	You’ll often want to do something like refresh the state of your page when the invoice is paid, or note some kind of state before the modal pops up. You can attach event listeners like this:

`js
window.btcpay.onModalWillEnter(yourCallbackFunction);
window.btcpay.onModalWillLeave(yourCallbackFunction);
window.btcpay.onModalReceiveMessage(yourCallbackFunction); // available from v1.0.5.6
`

onModalReceiveMessage will invoke your callback when a new status has been pushed from BTCPay Server to the invoice UI. The data format is {invoiceId: “x”, status: “y” }

 # Drupal Commerce 2.x integration

The project can be found [here](https://drupal.org/project/commerce_btcpay) on drupal.org and therefore can be installed using composer from the drupal.org packagist (no need to add the repo manually to your composer.json). The sources are available on [github](https://github.com/btcpayserver/commerce_btcpay).

Requirements

	BTCPay Server ([self hosted or 3rd party](/Deployment/README.md) or [quick start with a testserver](./TryItOut.md))

	Drupal Commerce 2.x installed ([installation guide](https://docs.drupalcommerce.org/commerce2/developer-guide/install-update/installation))

	Drupal: [configured private file system](https://www.drupal.org/docs/8/core/modules/file/overview#content-accessing-private-files)

Module installation and configuration

Quick walkthrough screencast

[![Drupal Commerce](https://img.youtube.com/vi/XBZwyC2v48s/mqdefault.jpg “BTCPay Server - Drupal Commerce”)](https://youtube.com/watch?v=XBZwyC2v48s “BTCPay Server - Drupal Commerce 2.x quick walkthrough”)

Quick walkthrough steps

Generate pairing code on BTCPay server

	BTCPay server: [create and configure a store](./CreateStore.md#creating-a-store-in-btcpay)

	in store settings go to “Access Tokens”

	click on [Create a new token]

	Label: enter some label (eg. my store)

	Public key: this needs to be left empty

	Facade: “merchant”

	click on [Request pairing]

	on next screen choose your configured store in Pair to select dropdown and click on [approve]

	note down the displayed 7-digit code at the top status message, e.g. “d7afaXr”

(you will need that code below on gateway configuration, see below)

Commerce BTCPay: Installation + configuration

	install module: composer require drupal/commerce_btcpay

	enable the module: drush en commerce_btcpay -y

	make sure you have configured [private file system](https://www.drupal.org/docs/8/core/modules/file/overview#content-accessing-private-files) (needed to store encrypted public+private key)

	Commerce BTCPay configuration (Commerce -> Configuration -> Payment -> Payment gateways):

	
	add payment method “BTCPay”
	
	Mode: Test or Live (you can configure both individually)

	Test/Live server host: enter your URL without https:// prefix e.g. btcpay.yourserver.com (note valid SSL certificate needed)

	Test/Live Paring code: enter the 7-digit pairing code from BTCPay “Access tokens” page

	Save
You should see a message that the tokens were successfully created.

 # Electrum Personal Server (EPS) integration

[Electrum Personal Server or EPS](https://github.com/chris-belcher/electrum-personal-server) is a personal version of public Electrum servers like [ElectrumX](./ElectrumX.md).

EPS can be integrated into BTCPay Server using the optional docker fragment [opt-add-electrum-ps.yml](https://github.com/btcpayserver/btcpayserver-docker/blob/master/docker-compose-generator/docker-fragments/opt-add-electrum-ps.yml). Use EPS when you want to use your own full node (included in BTCPay Server) to verify your own transactions privately when using Electrum Wallet.

The biggest difference with public Electrum servers (eg. ElectrumX), is that EPS is for monitoring only your own wallet(s). The “XPUB” (extended public key) of the wallet you use in Electrum must be shared with EPS in order for it to function all all. Other than this, it functions (from an end user perspective) in the same way as ElectrumX etc. It is easy to integrate into BTCPay just follow the instructions below.

EPS does not require txindex and works on a pruned node.

About Tor support

By default your EPS is accessible over Tor. You can run the following command line via SSH on your server to get your Tor address:

`bash
cat /var/lib/docker/volumes/generated_tor_servicesdir/_data/btc-electrum-ps/hostname
`

You can can also go to your BTCPay Server > Server Settings > Services and find the tor link in Other TOR hidden services.

On the Electrum wallet machine, if you want to connect to your server via Tor, we assume in this tutorial that you run the Tor Browser locally, and thus you will use SOCKS5 port 9150. If you run Tor through the command line instead, the local SOCKS5 port is 9050.

How to enable Electrum Personal Server (EPS) in BTCPay:

	If you do not use Tor, EPS is accessible for Electrum Wallets via TCP port 50002. You need to open this port up fully at least to be available within your own network to any PC or Android device running Electrum Wallet, and turn on port forwarding. If you use Tor, you can skip this step.

	As EPS is for a single wallet (single user), you must specify the XPUB/YPUB/ZPUB of your wallet as an environment varable before you enable the EPS docker-fragment. In Electrum Wallet go to the “Wallet” menu then select “Information” to copy and paste yours. Set ENV variable for your wallet XPUB and enable the Docker Additional Fragment on your BTCPay node by running the following steps:

` bash
export BTCPAYGEN_ADDITIONAL_FRAGMENTS="$BTCPAYGEN_ADDITIONAL_FRAGMENTS;opt-add-electrum-ps"
export EPS_XPUB="XPUB_ADD_YOUR_XPUB_YPUB_OR_ZPUB_HERE"
. btcpay-setup.sh -i
`

3. WAIT for your Bitcoin full node and EPS server to fully sync:
You can check the status of bitcoin core sync by going to your domain for BTCPay server, and it will show you on the front page. Or, you can check from the command line as well, using these commands:
docker logs btcpayserver_bitcoind - this will show you the bitcoin core blockchain sync status (and ALL other info about your node, including any errors)
docker logs generated_electrum_ps_1 - this will show you the EPS sync status. Note: EPS will NOT start syncing until bitcoin full node has finished syncing, you will see errors until that is finished and these can be ignored.

Once all syncing for both bitcoin and EPS have finished synching, you can proceed to the next step. (Note: Electrum wallets will not connect to an EPS server that has not finished synching)

How to connect Electrum Wallet to EPS

There are three ways to use your server from Electrum Wallet:

	By editing the configuration file

	By running Electrum by the command line

	Via the user interface (not recommended, bad privacy)

Option 1: Connect to your EPS Server by directly editing Electrum Wallet config file (before even opening the Electrum wallet GUI - recommended for full privacy):

You can setup your Electrum server by editing the configuration file.

In the [Electrum Wallet folder](https://electrum.readthedocs.io/en/latest/faq.html#where-is-my-wallet-file-located), open and edit the config file like this:

	Find line: “auto_connect”: true, and switch it to: “auto_connect”: false, - this will prevent your Electrum Wallet from auto-connecting to other 3rd party Electrum Servers at launch time (to obtain block headers and transaction information).

	Find line: “oneserver”: false, and switch it to: “oneserver”: true, - ensures that all data is obtained from just one server.

	Find or add line: “server”: “yourserver:50002:s”,`and switch it to your own EPS Server’s IP address, in the example above this would be: `”server”: “192.168.1.3:50002:s”,- hard code your IP address as the default upon opening the Wallet.

These 3 steps strongly recommended for full privacy by locking down Electrum Wallet to one single connection with your private server only ([Reference](https://github.com/chris-belcher/electrum-personal-server#how-to)).

	(If you use Tor) If you run Tor Browser, you can use it as SOCK5 proxy by adding “proxy”: “socks5:127.0.0.1:9150::”, to the configuration file.

Option 3: Connect to your EPS Server by command line

You can run electrum via command line electrum –oneserver –server yourserver:50002:s.

If you use Tor, add -p socks5:localhost:9150.

Option 4: Connect to your EPS Server from Electrum Wallet GUI (not recommended as this will momentarily connects with other random public Electrum servers if you are online):

	Open Electrum Wallet. When you click the traffic light (green or red) at the bottom of your Electrum Wallet, you will see a screen with a list of all the available Electrum servers that your wallet can connect to, normally with the Select Server Automatically box already checked:

![ElectrumWalletServerList](https://user-images.githubusercontent.com/1388507/68437521-8a5eb580-01c1-11ea-9ece-0666353a6742.png “Electrum Wallet Server List”)

	Now is the time to UNCHECK that Select Server Automatically setting, which will enable you to enter the IP address or domain or hostname of your EPS Server. In the case below, the EPS server is on the local network at 192.168.1.3 so we enter that manually (leave port as 50002) and press close.

![EnterElectrumServerIP](https://user-images.githubusercontent.com/1388507/68496320-4e276580-0252-11ea-8caf-facc8a246d70.png “Electrum Wallet Server IP”)

	(If you use Tor) Go to proxy, then click on Use Tor Proxy at port 9150.

	If all of the above worked well, and your node is healthy and synched, you will get a green traffic light down the bottom right of the wallet screen - that means success!

Reflection on what has been achieved:

You are now running your very own private EPS Server. All Electrum Wallet related data transfer happens directly between your EPS Server and the bitcoin blockchain, without going over any other 3rd party servers. You have attained full bitcoin transaction privacy (at least from the perspective of your blockchain queries and transactions, payment/receive addresses etc - nobody except you and the blockchain can see what you are doing).

Troubleshooting:

So there is one thing you may encounter, where even after you did everything correctly, you still get a red traffic light (which means not connected to any server) in the steps above. Any other troubleshooting tips that people encounter can be added, I would suggest to make a PR to this document directly.

	If you get a red traffic light, shutdown Electrum Wallet completely, then go to your Electrum Wallet folder ([see here](https://electrum.readthedocs.io/en/latest/faq.html#where-is-my-wallet-file-located) if you don’t know where that is).

Inside the Electrum Wallet folder (in this case below, it is what it looks like on a Mac) locate the certs directory and delete the certificate for the server you are trying to connect to, in this case 192.168.1.3, by dragging it to the Trash.

![Certs](https://user-images.githubusercontent.com/1388507/68497330-9a73a500-0254-11ea-9349-71bdb3bd9511.png “Certificates”)

Start up Electrum Wallet again, and connect to your EPS server. If it is fully synched, it will now likely show a green traffic light, and you are good to go.

 # Connecting Electrum Wallet to BTCPay Server

This documents explains how to connect a desktop [Electrum Wallet](https://electrum.org/) to a BTCPay Server.

Word of caution Electrum wallet relies on Electrum servers that are controlled by third-parties. Information, like public addresses, balances and the transacted amount can potentially be leaked.

To protect yourself against such leaks, set up [ElectrumX Server](./ElectrumX.md) or [Electrum Personal Server - EPS](https://github.com/chris-belcher/electrum-personal-server).

You can read about the differences between EPS and ElectrumX [here](https://www.reddit.com/r/Electrum/comments/7xb0lz/whats_the_difference_between_electrumx_server_and/).

	Create a Store in BTCPay Server

	[Download](https://electrum.org/#download) and install Electrum Wallet

Electrum Wallet Setup

After the installation, open Electrum Wallet by clicking on the icon on your desktop.

Quick Setup

The easiest way to setup your Electrum wallet with BTCPay is to import an a wallet file backup to your BTCPay Server.

	Create a new Electrum Wallet

	In Electrum, File > Save Backup > Save in folder

	In BTCPay Server, Store > Settings > Setup > Import Wallet File > Choose File > Continue

	Go to Receive tab in Electrum.

	Compare the addresses in Electrum and BTCPay Server, they should match.

	Confirm the address match in BTCPay.

Step by Step

The following setup guides you through setting up an entirely new Bech32(SegWit) Wallet in Electrum. If you already have a wallet skip to the Extended Public Key copying.

Firstly, give your wallet a name, for example, BTCPay Server Wallet and click Next.

![ElectrumWallet](./img/ElectrumWallet1.png “Create Electrum Wallet”)

Choose Standard wallet and proceed by clicking the `Next`button.

![ElectrumWallet](./img/ElectrumWallet2.png “Choose Standard Wallet in Electrum”)

Since we’re creating a brand-new wallet,choose Create a new seed and Next

![ElectrumWallet](./img/ElectrumWallet3.png “Generate a new seed in Electrum”)

From the multiple choice menu, select SegWit and Next

![ElectrumWallet](./img/ElectrumWallet4.png “Choose Segwit seed type in Electrum”)

IMPORTANT NOTE: If you’re a merchant, instead of SegWit (Bech32), it’s recommended to use SegWit wrapped (P2SH) format. [This guide](https://www.youtube.com/watch?v=-1DBJWwA2Cw) explains how to create P2SH wallet in Electrum that’s more suited for merchants, due to compatability with legacy wallets customers use.

IMPORTANT NOTE 2: Write down your recovery words in the order you see them on the screen. Write them down a piece of paper and store it somewhere secure. Take your time and triple check each word. Do not store your seed in a digital format (photograph, text document). Whoever has the access to your seed can access your funds. Confirm that the seed has been properly backed up by re-entering it in the same order. Once the seed is validated, proceed to the next step.

Copy and paste your seed words to complete your wallet creation in Electrum. Your wallet must be unencrypted to import it into your BTCPay Server. Once you have completed the setup of your wallet in BTCPay you can always add password encryption later in Electrum.

![ElectrumWallet](./img/electrum/electrum-create-1.gif)

Export and save a backup copy of your wallet.

![ElectrumWallet](./img/electrum/electrum-create-2-export.gif)

Import your wallet into your BTCPay store.

![ElectrumWallet](./img/electrum/electrum-create-3-import.gif)

Compare your addresses in your BTCPay store.

![ElectrumWallet](./img/electrum/electrum-create-4-compare-addresses.gif)

Alternative Setup

Instead of importing a wallet file you can instead transfer the public key to your BTCPay Server. This can be useful if your wallet is encrypted and you do not want to unencrypt it.

	Create a new Electrum Wallet

	In Electrum, Wallet > Wallet Information - copy the Master Public Key.

	In BTCPay Server, Store > Settings > Setup > Connect an existing wallet > Enter extended public key

	Go to Receive tab in Electrum.

	Compare the addresses in Electrum and BTCPay Server, they should match.

	Confirm the address match in BTCPay.

When the wallet loads (it may take few moments), in the top menu, click on the Wallet and then`Information` .

![ElectrumWallet](./img/ElectrumWallet9.png “Electrum Wallet Information”)

Select and copy the Master Public Key. This is the public key from which BTCPay will derive addresses.

![ElectrumWallet](./img/ElectrumWallet10.png “Copy Electrum master public key”)

Return to your BTCPay Server. Click on the Stores in the header menu and select Settings. Find Wallet and click on the Setup button.

![ElectrumWallet](./img/createwallet/SetupWallet.png “Set up your wallet”)

Paste the Master Public Key into derivation scheme field as it is, without adding anything else. Make sure that Enabled checkbox is ticked and click Continue.

![ElectrumWallet](./img/createwallet/SetupWalletXpub.png “Paste the xpub key and enable the wallet”)

Return to the Electrum Wallet. Go to Receive tab which shows your wallet receiving address.

Compare the address you see in Electrum Wallet to Addresses shown in BTCPay Server. If there’s a match, continue. If there is no match, copy the address from Electrum and paste it into Hint Address Form. If you still can’t get the matching, double-check that you’re actually pasting Master Public Key.

![ElectrumWallet](./img/ElectrumWallet11.png “Compare Electrum Wallet and BTCPay Server addresses”)

Configuring the Gap Limit in Electrum

In the top menu, click on the View and then`Show Console` .

![ElectrumWallet](./img/ElectrumWallet11a.png “Show Electrum Wallet console”)

Enter following commands in Electrum console and press `enter`on your keyboard.


	```
	wallet.change_gap_limit(100)





```
If you are running a version older than Electrum 4, also enter the following command and press ‘enter’

`
wallet.storage.write()
`

![ElectrumWallet](./img/ElectrumWallet12.png “Electrum Wallet console”)

Restart your Electrum and verify that the newly set gap limit is correct by entering in the console:

`
wallet.gap_limit
`

There’s no good answer to how much you should set the gap limit to. Most merchants set 100-200. If you’re a big merchants with high transaction volume, you can try with even higher gap limit.

For more details about the [Gap Limit, check the FAQ](./FAQ/Wallet.md#missing-payments-in-my-software-or-hardware-wallet).

Electrum and BTCPay Server are now connected. Any payments received to your BTCPay will be visible in Electrum, where you can further spend them.

 # ElectrumX

This document explains how to connect Electrum Wallet to an ElectrumX Server.

Note: the [docker version of BTCPay Server](https://github.com/btcpayserver/btcpayserver-docker) (since Nov 7th 2019, version 1.0.3.137) supports full integration with [ElectrumX](https://electrumx.readthedocs.io/en/latest/features.html) is the most widely implemented software used for Electrum public servers that your local Electrum wallet relies upon to get all the details of, or broadcast transactions to the bitcoin blockchain. Skip to Section 2 below, to read more on what this all means, and how to set it up on your BTCPay stack.

How to integrate ElectrumX into your BTCPay Server and connect your Electrum Wallet to it for your complete privacy

(only available in BTCPay docker version)

Before we proceed, it is important to understand how your Electrum wallet on your PC/Mac functions so well/fast, without having its own bitcoin full node. In actual fact, Electrum Wallet relies on a community effort to maintain a bunch of servers all around the world with a bitcoin full node that do this job for you! They are called Electrum Servers, and you can be a part of that community to make that network even stronger, lets see how.

When you click the little traffic light at the bottom of your Electrum Wallet here:

![ElectrumWalletMainScreenLight](https://user-images.githubusercontent.com/1388507/68437133-5636c500-01c0-11ea-822c-6e72bd6d60ea.png “Electrum Wallet History”)

You will see this screen with a list of all the available Electrum servers that your wallet can connect to, normally with “Select Server Automatically” already checked:

![ElectrumWalletServerList](https://user-images.githubusercontent.com/1388507/68437521-8a5eb580-01c1-11ea-9ece-0666353a6742.png “Electrum Wallet Network”)

While using Electrum Wallet with “Select Server Automatically” on is the easiest, every transaction that you make/browse/broadcast in your Electrum Wallet will be done via someone else’s server - this is a privacy risk, that will be mitigated by setting up and using your own ElectrumX Server.

Section 2.1 Enable Your Own ElectrumX Server (fully integrated with your BTCPay Server’s full bitcoin node)

Prerequisites (mandatory):

	Docker only: Only the [Docker version of BTCPay Server](https://docs.btcpayserver.org/Docker/) is supported.

	Unpruned BTCPay node: Make sure your BTCPay implementation is NOT [pruned](./FAQ/Synchronization.md#can-i-skip-the-synchronization) (i.e. you have synched and stored from genesis block. Check that you do NOT use the opt-save-storage [Environment Variable](https://docs.btcpayserver.org/Docker/#generated-docker-compose))

	Drive space: At least 400GB of drive space on the device where your docker volumes are stored is required (as at the writing of this documentation on 9th Nov 2019, the total hard drive space used is 333GB - with full node and ElectrumX enabled - and of course this will grow further over time).

	Additional Fragments: You are familiar with how to use BTCPay’s [Additional Fragment](https://docs.btcpayserver.org/Docker/#environment-variables) feature as part of your environment variable setup.

	Server architecture: The (official) [ElectrumX docker](https://github.com/lukechilds/docker-electrumx) used here is only tested on a BTCPay Server running on x86_64 architecture. So far it is tested extensively on Ubuntu 18.04 and Debian Buster. Unless it is overhauled and tested well on Raspberry Pi (and other architectures) it likely will not work.

	Basic Linux command line knowledge: is assumed.

How will enabling ElectrumX Server affect an existing BTCPay implementation?:

Fundamentally, setting up ElectrumX in BTCPay server is simple, and will not affect the rest of your implementation. The only pre-requisites are as above. The [ElectrumX official docker release](https://github.com/lukechilds/docker-electrumx) is enabled in BTCPay by activating the [additional fragment](https://docs.btcpayserver.org/Docker/#generated-docker-compose) called [opt-add-electumx](https://github.com/btcpayserver/btcpayserver-docker/blob/master/docker-compose-generator/docker-fragments/opt-add-electrumx.yml). This fragment will not only enable and start the ElectrumX server, it will also enable txindex=1 in your bitcoin full node. txindex=1 (Transaction Index=ON) is a bitcoin core feature required for ElectrumX to be able to serve your Electrum Wallet detailed transaction data for any transaction, directly from the blockchain, without getting it from any third party server.

If you have been running your BTCPay Server for a while but haven’t had txindex=1 set until now, then it might take a few hours to build the index, this is no issue and it should not involve downtime of more than a few hours - better to set this to run overnight though when nobody will be using your node. Note: If you want to rebuild the index from scratch, launch bitcoind once with the reindex=1 option (warning: this reindex option may take a VERY long time, and is not enabled out of the box as you likely dont need it, and hence is not in scope of this document).

Steps to enable ElectrumX Server in BTCPay:

Here are all the steps to enable ElectrumX Server in your BTCPay node (read carefully as you may need to adjust for your specific setup, especially if you use other custom or conflicting “fragments” (pruning, less-memory etc. To reiterate, you should NOT proceed further here if you run a pruned BTCPay node.

	ElectrumX Server is accessible for Electrum Wallets via TCP port 50002. You need to open this port up fully at least to be available within your own network to any PC or Android device running Electrum Wallet, and turn on port forwarding (you can also port forward 50002 from your Internet/WAN, to enable other Electrum Wallet users from the Internet to query your server).

	Enable the Docker Additional Fragment on your BTCPay node by running the following commands (this is assuming a brand new BTCPay installation with LND and ElectrumX, please tweak accordingly using the [relevant documentation](https://docs.btcpayserver.org/Docker/#generated-docker-compose):

	Follow the [normal setup and install of BTCPay Server](https://github.com/btcpayserver/btcpayserver-docker#full-installation-for-technical-users), then after this command cd btcpayserver-docker, follow the below instructions instead of those in the link. If you already have a BTCPay Server running, then just follow from the next step.

	Set your environment variables:

`bash
export BTCPAY_HOST="YOURHOST.com"
export NBITCOIN_NETWORK="mainnet"
export BTCPAYGEN_CRYPTO1="btc"
export BTCPAYGEN_REVERSEPROXY="nginx"
export BTCPAYGEN_LIGHTNING="lnd"
export LIGHTNING_ALIAS="MY_LN"
export LETSENCRYPT_EMAIL="you@example.com"
export BTCPAYGEN_ADDITIONAL_FRAGMENTS="opt-add-electrumx;opt-more-memory"
`

You can run all of that as one command after you tweak it to your needs. The main part for our purposes in this guide of course is BTCPAYGEN_ADDITIONAL_FRAGMENTS=”opt-add-electrumx”. Note: opt-more-memory can be removed if you like, but I really recommend it if your system has more than 1GB of RAM/memory that you can assign to BTCPay server, it will speed synching your node and the general performance of ElectrumX up drastically.

	Set up or reconfigure BTCPay Server with ElectrumX:

cd ~/BTCPayServer/btcpayserver-docker && . ./btcpay-setup.sh -i

This will setup (or re-setup) your server with everything needed including ElectrumX, and it all should “just work”. But, it will trigger at least a couple of hours of syncing the txindex, and if it is a new server, could be a couple of days depending on your hardware.

	
	WAIT for your node to fully sync:
	You can check the status of bitcoin core sync by going to your domain for BTCPay server, and it will show you on the front page. Or, you can check from the command line as well, using these commands:

docker logs btcpayserver_bitcoind - this will show you the bitcoin core blockchain sync status (and ALL other info about your node, including any errors)

docker logs generated_electrumx_1 - this will show you the ElectrumX sync status. Note: ElectrumX will NOT start syncing until bitcoin full node has finished syncing, you will see errors until that is finished and these can be ignored.

Once all syncing for both bitcoin and ElectrumX has finished you can proceed to the next step. (Note: Electrum wallets will not connect to an Electrum server that has not finished synching)

Section 2.2 Connect your Electrum Wallet (Desktop or Android) to your ElectrumX Server

Connect to ElectrumX from Electrum Wallet on your Mac/PC/Linux Machine:

Read all of this first before proceeding. You may wish to do just the “Protip” below instead of the manual steps in the Electrum Wallet GUI.

Open Electrum Wallet. When you click the traffic light at the bottom of your Electrum Wallet:

![ElectrumWalletMainScreenLight](https://user-images.githubusercontent.com/1388507/68437133-5636c500-01c0-11ea-822c-6e72bd6d60ea.png “Open Electrum Wallet network config”)

You will see this screen with a list of all the available Electrum servers that your wallet can connect to, normally with Select Server Automatically already checked:

![ElectrumWalletServerList](https://user-images.githubusercontent.com/1388507/68437521-8a5eb580-01c1-11ea-9ece-0666353a6742.png “Electrum Wallet Network tab”)

Now is the time to UNCHECK that Select Server Automatically setting, which will enable you to enter the IP address or domain or hostname of your ElectrumX Server. In the case below, the ElectrumX server is on the local network at 192.168.1.3 so we enter that manually (leave port as 50002) and press close.

![EnterElectrumXServerIP](https://user-images.githubusercontent.com/1388507/68496320-4e276580-0252-11ea-8caf-facc8a246d70.png “Electrum Wallet personal ElectrumX”)

If all of the above worked well, and your node is healthy, you will get a green traffic light down the bottom right of the wallet interface as pictured here - that means success!:

![ElectrumWalletMainScreenLight](https://user-images.githubusercontent.com/1388507/68437133-5636c500-01c0-11ea-822c-6e72bd6d60ea.png “Electrum Wallet main tab”)

Protip - optionally perform the above steps directly in Electrum Wallet config file before even opening the wallet GUI:
If you prefer to avoid connecting to other servers from the outset when you open Electrum Wallet, do the following before you open Electrum Wallet GUI.

In the Electrum Wallet folder ([see here](https://electrum.readthedocs.io/en/latest/faq.html#where-is-my-wallet-file-located) if you don’t know where that is), open and edit the config file like this:

	Find line: “auto_connect”: true, and switch it to: “auto_connect”: false, - this will prevent your Electrum Wallet from auto-connecting to other 3rd party Electrum Servers at launch time (to obtain block headers and transaction information).

	Find line: “oneserver”: false, and switch it to: “oneserver”: true, - ensures that all data is obtained from just one server.

	Find or add line: “server”: “SOMEIPADDRESS:50002:s”,`and switch it to your own ElectrumX Server’s IP address, in the example above this would be: `”server”: “192.168.1.3:50002:s”,- hard code your IP address as the default upon opening the Wallet.

These 3 steps optional but recommended for full privacy by locking down Electrum Wallet to one single connection with your private server ([Reference](https://github.com/chris-belcher/electrum-personal-server#how-to)).

Reflection on what has been achieved:

You are now running your very own private ElectrumX Server. All Electrum Wallet related data transfer happens directly between your ElectrumX Server and the bitcoin blockchain, without going over any other 3rd party servers. You have attained full bitcoin transaction privacy (at least from the perspective of your blockchain queries and transactions, payment/receive addresses etc - nobody except you and the blockchain can see what you are doing).

Troubleshooting:

So there is one thing you may encounter, where even after you did everything correctly, you still get a red traffic light (which means not connected to any server) in the steps above. Any other troubleshooting tips that people encounter can be added, I would suggest to make a PR to this document directly.

	If you get a red traffic light, shutdown Electrum Wallet completely, then go to your Electrum Wallet folder ([see here](https://electrum.readthedocs.io/en/latest/faq.html#where-is-my-wallet-file-located) if you don’t know where that is).

Inside the Electrum Wallet folder (in this case below, it is what it looks like on a Mac) locate the certs directory and delete the certificate for the server you are trying to connect to, in this case 192.168.1.3, by dragging it to the Trash.

![Certs](https://user-images.githubusercontent.com/1388507/68497330-9a73a500-0254-11ea-9349-71bdb3bd9511.png “Certificates”)

Start up Electrum Wallet again, and connect to your ElectrumX server. If it is fully synched, it will now likely show a green traffic light, and you are good to go.

 # BTCPayServer Documentation

Introduction

BTCPay Server is an open-source, self-hosted payment processor for Bitcoin and other cryptocurrencies.

If you have trouble using BTCPay Server, consider joining the [communities listed on the official website](https://btcpayserver.org/#communityCTA) to get help from BTCPay community members.

Only file [Github issue](https://github.com/btcpayserver/btcpayserver/issues) for technical issues you can’t resolve through other channels or feature requests you’ve validated with other members of community.

Please check out our [official website](https://btcpayserver.org/), our [complete documentation](https://github.com/btcpayserver/btcpayserver-doc) and [FAQ](./FAQ/README.md#btcpay-frequently-asked-questions-and-common-issues) for more details.

![BTCPay Server](./img/BTCPayServerScreenshot.png “BTCPay Server”)

Features

	Direct, peer-to-peer Bitcoin payments

	No transaction fees (other than the [network fee](https://en.bitcoin.it/wiki/Miner_fees))

	No processing fees

	No middleman

	No KYC

	Non-custodial (complete control over the private key)

	Enhanced privacy

	Enhanced security

	Self-hosted

	SegWit support

	Lightning Network support (LND, c-lightning, Eclair and Ptarmigan)

	Tor support

	Opt-in [altcoin](./Development/Altcoins.md) integrations

	Full compatibility with BitPay API (easy migration)

	Process payments for others

	Easy-embeddable Payment buttons

	Point of sale app

	Crowdfunding app

	Payment Requests

	Internal, full-node reliant wallet with [hardware wallet integration](./HardwareWalletIntegration.md)

	[Payjoin Support](./Payjoin.md)

[![How BTCPay Server Features Overview](https://img.youtube.com/vi/R-yaXk4NvEs/mqdefault.jpg)](https://www.youtube.com/watch?v=R-yaXk4NvEs)

How it works

[![How BTCPay Works](https://img.youtube.com/vi/nr0UNbz3AoQ/mqdefault.jpg)](https://www.youtube.com/watch?v=nr0UNbz3AoQ “How BTCPay Server Works”)

In a nutshell

In layman’s terms, BTCPay Server is a self-hosted and automated invoicing system. At checkout, the customer is presented with an invoice. Each time, a different address is tied to a particular invoice, so there is no address re-use. BTCPay Server follows the status of the invoice through the blockchain and informs a merchant when he can fulfill the order safely.

How is it different

BTCPay Server is free, open-source, self-hostable software.
BTCPay Server is not a company. To use BTCPay Server, [deploy](/Deployment/README.md) your own instance, or use a [third-party host](/Deployment/ThirdPartyHosting.md).

To explore what BTCPay Server has to offer, head over to the [official demo](https://mainnet.demo.btcpayserver.org/Account/Login).

While using BTCPay Server, there is no payment processing intermediary. Accept payments directly and stay in full control of received funds. There are no processing or subscription fees. BTCPay Server is free to use and completely open-source, so developers or security auditors can always inspect the quality of the code.

[![BTCPay Server Simply Explained](https://img.youtube.com/vi/dbX6qWZlxOw/mqdefault.jpg)](https://www.youtube.com/watch?v=dbX6qWZlxOw “BTCPay Server Simply Explained”)

How it keeps funds secure

Payments via BTCPay Server are direct, peer to peer. The merchant receives the coins directly to their wallet, with no intermediary. Securing funds comes down to the merchant securing their own private keys, which is standard for most cryptocurrency wallets.

There is an [internal wallet](./Wallet.md) inside BTCPay Server that merchants can use to view and spend funds received by their customers. The funds from that wallet can only be spent, if a transaction is signed with the merchant’s compatible hardware wallet or a private key. This allows merchants to have complete control of funds received.

How it keeps data private

The data is shared only between two parties - the buyer and a seller. Other payment processors collect and share user data with other parties, making it very hard to comply with privacy law regulations like GDPR. Each invoice in BTCPay Server has a different receiving address, so there is no [address re-use](https://en.bitcoin.it/wiki/Address_reuse) which improves privacy significantly.

How it resists censorship

	Self-hosted

	Can be run everywhere, from low-powered device like Raspberry Pi at home to enterprise-grade servers

	No third-party

	Can easily be re-deployed

BTCPay Server does not have a central point of failure since nobody is controlling it except for the user running it. If run on the cloud server, the hosting providers can potentially censor users by suspending hosting accounts or disabling access to virtual machines. This is always a risk for anyone using a hosting provider. Since no private keys are stored on the server, a censored individual can easily re-deploy the server with another host. Your coins are always inside your wallet.

If an invoice is paid while your BTCPay Server is down, the software will automatically determine and notify the merchant of offline invoice payments when your server is back up. If a hosting provider suspends the server, and there was no proper backup, server settings and invoice data may be lost, but on-chain payments are always in your wallet. For ultimate censorship-resistance, users should run [BTCPay on their own hardware](/Deployment/Hardware.md). The software can even be run on a single-board computer, like [Raspberry Pi](/Deployment/RaspberryPi.md) from the comfort of your home.

Beyond payment processing

BTCPay Server is often misconceived as being the payment processor used by the merchants only. In reality, the [use-cases](./UseCase.md) are limitless.

BTCPay is a tech-stack that glues lots of complex components into an easy-to-use and coherent interface. The software can be used by self-sovereign individuals as a way to run a full node at home with a full-node reliant wallet.

Developers can build the entire businesses and projects on top of the stack.

Enterprises can use it as scalable and secure back-end of their infrastructure without ever having to put a trust in a third-party. BTCPay Server is a [toolbox](https://www.facebook.com/kriptomedia/videos/vl.418099655731067/2898112140218815) with lots of tools you can use, it’s up to you how you want to use it.

Community articles

	[The Ultimate List of BTCPay Server Hosts and Merchants](https://bitcoinshirt.co/btcpay-stores/)

	[BTCPay Server official YouTube channel](https://www.youtube.com/channel/UCpG9WL6TJuoNfFVkaDMp9ug)

	[BTCPay Server Manual Install](http://blog.sipsorcery.com/?p=1052)

	[How to Setup BTC and Lightning Payment Gateway with BTCPayServer on Linux (Manual Install)](https://freedomnode.com/blog/114/how-to-setup-btc-and-lightning-payment-gateway-with-btcpayserver-on-linux-manual-install)

	[BTCPay Server Setup Using Digital Ocean](https://medium.com/@molthoff/running-btcpay-on-digital-ocean-for-10-month-how-to-add-other-coins-7a497339fb2f)

	[BTCPay Server Setup Using AWS EC2](https://wiki.ion.radar.tech/tutorials/nodes/btcpay-+-aws-ec2)

For list of articles, podcasts and video presentations about BTCPay, please see our [media repository](https://github.com/btcpayserver/btcpayserver-media/tree/master/Publications).

Contributing

Pull requests are welcome and appreciated.

If you’re beginner, take a look at the step by step guide on how to contribute to BTCPay Server documentation below.

[![Contributing to Documentation](https://img.youtube.com/vi/bSDROcdSSWw/mqdefault.jpg)](https://www.youtube.com/watch?v=bSDROcdSSWw “How BTCPay Server Works”)

	<div class=”supporters”>
	<h3>Our Supporters</h3>
<p>

The BTCPay Server Project is proudly supported by these entities through the
BTCPay Server Foundation.

</p>
<table>

	<tbody>
	
	<tr>
	
	<td align=”center” valign=”top” width=”14.285714285714285714285714285714%”>
	
	
	

Kraken

</td>
<td align=”center” valign=”top” width=”14.285714285714285714285714285714%”>

	
	

Square Crypto

</td>
<td align=”center” valign=”top” width=”14.285714285714285714285714285714%”>

	
	

PNXBET

</td>
<td align=”center” valign=”top” width=”14.285714285714285714285714285714%”>

	
	

Baillie Gifford

</td>
<td align=”center” valign=”top” width=”14.285714285714285714285714285714%”>

	
	

ACINQ

</td>
<td align=”center” valign=”top” width=”14.285714285714285714285714285714%”>

	
	

LunaNode

</td>
</tr>
<tr>
<td align=”center” valign=”top” width=”14.285714285714285714285714285714%”>

	
	

Wallet of Satoshi

</td>
<td align=”center” valign=”top” width=”14.285714285714285714285714285714%”>

	
	

Nomics

</td>
</td>
<td align=”center” valign=”top” width=”14.285714285714285714285714285714%”>

	
	

Coincards

</td>

</tr>

</tbody>

</table>

</div>

If you’d like to support the project, please visit the [donation page](https://btcpayserver.org/donate/).

 # Hardware Wallet Integration

For optimal balance between ease of use, security and privacy, it’s recommended to use [BTCPay Server Wallet](Wallet.md) with a hardware wallet.

The hardware wallet integration within BTCPay Server allows you to import your hardware wallet and spend the incoming funds with a simple confirmation on your device. Your private keys never leave the device and all funds are being validated against your own full node and no data leakage.

Getting Started

[](https://www.youtube.com/watch?v=hh_cm8MKl2g)

	[Download the BTCPay Vault app](https://github.com/btcpayserver/BTCPayServer.Vault/releases)

	Install the Vault on your PC (Windows, MacOS or Linux)

	Open the BTCPay Vault app

	Plug in the hardware wallet into your PC and make sure it’s in a wake up state

	Go to your BTCPay Server’s Store > Settings > Wallet > Setup > Import from a hardware wallet

	Grant the permission

	The public key will automatically be imported in the store and configured to an appropriate format

	Validate that address shown on BTCPay is the same as the one on your device

	Save

![BTCPay Server Vault configuration](./img/BTCPayVaultStoreSetup1.png “BTCPay Server Vault configuration”)

![BTCPay Server Vault configuration](./img/BTCPayVaultStoreSetup2.png “BTCPay Server Vault configuration”)

![BTCPay Server Vault configuration](./img/BTCPayVaultStoreSetup3.png “BTCPay Server Vault configuration”)

![BTCPay Server Vault configuration](./img/BTCPayVaultStoreSetup4.png “BTCPay Server Vault configuration”)

![BTCPay Server Vault configuration](./img/BTCPayVaultStoreSetup5.png “BTCPay Server Vault configuration”)

![BTCPay Server Vault configuration](./img/BTCPayVaultStoreSetup6.png “BTCPay Server Vault configuration”)

![BTCPay Server Vault configuration](./img/BTCPayVaultStoreSetup7.png “BTCPay Server Vault configuration”)

Spending funds

Once you’ve received funds to your wallet and you decide to spend them, you can sign the transaction with your hardware wallet, all inside BTCPay Server.

	Open BTCPay Vault app on your PC

	Plug in the hardware wallet and make sure it’s in wake up state

	In BTCPay Server, go to > Wallets > Manage > Send

	Fill in the Destination address and the Amount

	Select Sign with a hardware wallet

	Verify the transaction on your hardware wallet and confirm it

	Broadcast the transaction

![Send Bitcoin via BTCPay Vault](./img/BTCPayVaultWalletSend1.png “Send Bitcoin via BTCPay Vault”)

Advanced Settings

Additional transaction settings can be found by clicking on the [Advanced Settings](Wallet.md#advanced-settings) button. If you are not familiar with these types of settings, you may leave them as is to use the default settings.

If you are experiencing issues sending transactions from a Trezor wallet, you may need to enable [this advanced setting](FAQ/Wallet.md#why-is-sending-a-transaction-using-trezor-failing).

![Send Bitcoin via BTCPay Vault](./img/BTCPayVaultWalletSend2.png “Send Bitcoin via BTCPay Vault”)

Supported Hardware Wallets

The list of supported hardware wallets is available [on this link](https://github.com/bitcoin-core/HWI#device-support).

:::warning
The hardware wallet integration in BTCPay Server only supports Bitcoin. [Altcoin](/Development/Altcoins.md) wallets enabled on your server won’t work.
::

 # Invoices

The invoices page lists the invoices from all stores and [apps](./Apps.md) and [payment requests](./PaymentRequests.md) in BTCPay Server.
It cumulatively sorts invoices by date and allows plenty of customization options for a better invoice management.

Managing Invoices

![Invoices Interface](./img/Invoices.png “BTCPay Server invoices”)

Invoice Filtering

Invoices can be filtered via the quick filters located next to the search button or via the advanced filters which can be toggled by clicking the (Help) link on the top of the page.
Users can filter invoices by store, order id, item id, status or a date.

![Invoice Filtering](./img/InvoiceFiltering.gif “Filter BTCPay Server invoices”)

Invoice Export

BTCPay Server Invoices can be exported in CSV or JSON format.
For more information about invoice export and accounting, [see this page](./Accounting.md).

Invoice Details

The invoice details page contains all information related to an invoice.

Invoice information is created automatically based on invoice status, exchange rate, etc. Product information is created automatically if the invoice was created with product information such as in the Point of Sale app. Read about collecting Buyer information [here](./FAQ/Stores.md#how-to-collect-additional-buyer-information).

Invoice Statuses

Table below lists and describes common invoice statuses in BTCPay and suggests common actions.
Actions are just recommendations.
It’s up to users to define best course of action for their use-case and business.

Invoice Status | Description | Action |

———————- | ———————————————————— | ————- |

New | Not paid, invoice timer still has not expired | None |

New (paidPartial) | Not paid in full, invoice timer still has not expired | None |

Expired | Not paid, invoice timer expired | None |

Paid | Paid, but has not received sufficient amount of confirmations specified in the Store Settings | Wait for confirmations (The invoice should become - complete) |

Confirmed* | Paid, confirmed, by reaching the number of confirmations in store settings but has not received the default number (6) of confirmations in BTCPay. | Wait for remaining confirmations, or proceed if store settings confirmations is acceptable |

Complete | Paid, completed, received sufficient amount of confirmations in store | Fulfil the order |

Complete (marked) | Status was manually changed to complete from an invalid or expired status | Store admin has marked the payment as complete |

Expired (paidPartial)**| Paid, not in full amount, and expired | Contact buyer to arrange a refund or ask for them to pay their due. Optionally mark invoice as complete or invalid |

Expired (paidLate) | Paid, in full amount, after expired | Contact buyer to arrange a refund or process order if late confirmations are acceptable. | Optionally mark as complete or mark as invalid |

Paid (paidOver) | Paid more than the invoice amount, but has not received sufficient amount of confirmations specified in the Store Settings | Wait for confirmations. The invoice should become - Complete (Paid Over) |

Complete (paidOver) | Paid more than the invoice amount, completed, received sufficient amount of confirmations | Contact buyer to arrange a refund for the extra amount, or optionally wait for buyer to contact you |

Invalid*** | Paid, but failed to receive sufficient amount of confirmations within the time specified in store settings | Check the transaction on a blockchain explorer, if it received sufficient confirmations, mark as complete |

Invalid (marked) | Status was manually changed to invalid from a complete or expired status | Store admin has marked the payment as invalid |

Invalid (paidOver) | Paid more than the invoice amount, but failed to receive sufficient amount of confirmations within the time specified in store settings | Check the transaction on a blockchain explorer, if it received sufficient confirmations, mark as complete |

	*Invoices paid via the [Lightning Network](./LightningNetwork.md) immediately go to a completed state, as their confirmation is instant.

	**Paid Partial invoice usually happens when a buyer pays the invoice from the exchange wallet which takes a fee for their service and deducts it from a total. In some cases, it happens when buyer enters an incorrect amount in their wallet.

	***Invalid - If you’re receiving a lot of invalid invoices in your store, you may want to [adjust invalid invoice time in store settings](./FAQ/Stores.md#payment-invalid-if-transactions-fails-to-confirm-minutes-after-invoice-expiration).

Archived Invoices

As a result of the no address re-use feature of BTCPay Server, it’s common to see many expired invoices in your store’s invoice page. To hide them from your view, select them in the list and mark them as archived. Invoices that have been marked as archived are not deleted. Payment to an archived invoice will still be detected by your BTCPay Server (paidLate status). You can view the store’s archived invoices at any time by selecting archived invoices from the search filter dropdown.

 # Connecting Ledger Wallet to BTCPay Server

This document shows how to connect Ledger Nano S Wallet to BTCPay Server.

:::warning
Direct Ledger Nano S integration is no longer supported. For Bitcoin wallets, you can use your Ledger hardware wallet regularly via the [new hardware wallet integration](./HardwareWalletIntegration.md).

For [altcoin](/Development/Altcoins.md) wallets, you can spend funds from your external wallet, sign a transaction within the [internal wallet](./Wallet.md) with [HD Private Key or mnemonic seed](./Wallet.md#signing-with-hd-private-key-or-mnemonic-seed) or a [hot wallet](./Wallet.md#signing-with-a-hot-wallet).

To set up a new altcoin wallet, add the extended public key manually or [create a new wallet](./CreateWallet.md).
::

Ledger Nano S Wallet Setup

This guide assumes, you have a Nano S wallet set up. To configure the Nano S, please see the [quick setup guide on manufacturer’s website](https://www.ledger.com/start/).

Requirements

	Bitcoin App installed on the Ledger

	Google Chrome or Firefox

	For Firefox, U2F needs to be enabled in about:config

	No other U2F devices plugged in into your PC (Yubikey, other wallets, etc)

Quick Setup

	Plug in Ledger Nano S into your PC.

	Open the Bitcoin app on your Ledger.

	In BTCPay Server, Store > Settings > Wallet > Setup > Derivation Scheme > Import from Hardware Device > Ledger wallet

	Select the account which you want to use, in most cases it’s the Account 0

	Confirm the Export public key on the wallet.

	The extended public key will now automatically be added from Ledger to your BTCPay Server Store.

	Make sure that the derivation scheme is Enabled

	Click Continue

	Confirm the address match in BTCPay.

Your Ledger wallet is now connected to your BTCPay. Payments go directly to Ledger.

Manual Setup

If you have more than 20 accounts in your Ledger you might not be able to find the correct account because the select shows a maximum of 20 entries.
In this case you can manually find the extended public key for your wanted account in these steps:

	Open the [Ledger live app](https://shop.ledger.com/pages/ledger-live)

	Accounts -> choose your account

	Edit Account on the top right via the tool-icon

	In Edit Account -> ADVANCED LOGS

	Copy the extended public key string

	Paste it manually into the “DerivationScheme” textfield

	Continue with [Step 7 of the Quick Setup above](#quick-setup)

![Ledger Account “Advanced Logs” info screenshot](./img/LedgerHelpXpub.png “Ledger Account Advanced Logs”)

Spending from BTCPay Server wallet with Ledger

Once there are some funds in received to your BTCPay Wallet connected to Ledger, you can spend them by signing a transaction with your hardware wallet. This allows easy interaction of the Ledger wallet with your full node, without leaking information to third-party servers.

	Plug in Ledger Nano S into your PC.

	Open the Bitcoin app on your Ledger.

	In BTCPay, go to Wallets > Manage > Send

	Fill in destination address and the amount

	Click on the Sign with your Ledger Wallet device.

	BTCPay will establish a connection with the Ledger wallet and display transaction information on the wallet screen.

	Confirm the transaction on the Ledger.

	In Ledger, click on the Ready To Sign

	Review your transactions and click Broadcast to broadcast it on the network.

The video below shows how to connect your BTCPay store to your Ledger and how to use Ledger with the [internal BTCPay wallet](./Wallet.md).

[![BTCPay Server and Ledger](https://img.youtube.com/vi/1Sj5mP4TkFI/mqdefault.jpg “BTCPay Server and Ledger”)](https://www.youtube.com/watch?v=1Sj5mP4TkFI “Ledger Nano S with BTCPay Server”)

 # Lightning Network and BTCPay

After deploying BTCPay Server, you may want to experiment with an innovative second-layer payment system built on top of Bitcoin protocol - the [Lightning Network](https://en.bitcoin.it/wiki/Lightning_Network).

This guide will show you how to set up your Lightning Network node in BTCPay and guide you through the basics.

::: danger
Before you proceed, please understand that the Lightning Network is still in the experimental stage.
Do not put the money you can’t afford to lose. There is a high risk of you losing the money.
::

Take time to familiarize yourself with the risks associated with using the Lightning Network.
Your keys are in a hot-wallet.
Some implementations do not have a backup for lightning keys in BTCPay.
This means:

	If you erase your BTCPay Server or your machine crashes - you lose all the funds.

	If your server gets hacked - a hacker can take all of your funds by accessing your keys.

While the keys from your Lightning Network don’t have a backup and someone can steal them theoretically, your on-chain Bitcoin funds are safe and are never uploaded on the server.

As the technology matures and develops, things like a proper backup will be easier to implement in BTCPay.
As of [v1.0.3.138](https://blog.btcpayserver.org/btcpay-lnd-migration/), LND is the only lightning network implementation that allows for [lightning seed backups with BTCPay Server](./FAQ/LightningNetwork.md#where-can-i-find-recovery-seed-backup-for-my-lightning-network-wallet-in-btcpay-server).

BTCPay currently offers three implementations of the Lightning Network:

	[LND](https://github.com/lightningnetwork/lnd)

	[c-lightning](https://github.com/ElementsProject/lightning)

	[eclair](https://github.com/ACINQ/eclair)

Choosing the Lightning Network implementation

First, read [here](./FAQ/LightningNetwork.md#can-i-use-a-pruned-node-with-ln-in-btcpay) about using pruned Bitcoin nodes with lightning network implementations before deploying.

On the installation, you’ll have the option to choose the implementation.
For [web-interface installations](/Deployment/LunaNode.md), you can simply select the implementation from the drop-down menu.
For other [docker](https://github.com/btcpayserver/btcpayserver-docker) based [deployment methods](/Deployment/README.md) you need to:

`bash
sudo su -
cd btcpayserver-docker
export BTCPAYGEN_LIGHTNING="implementationgoeshere"
. ./btcpay-setup.sh -i
`

For c-lightning use export BTCPAYGEN_LIGHTNING=”clightning”

For LND use export BTCPAYGEN_LIGHTNING=”lnd”

For eclair use export BTCPAYGEN_LIGHTNING=”eclair”

For eclair it also requires export BTCPAYGEN_ADDITIONAL_FRAGMENTS=”opt-txindex”

Finally, to begin using Lightning, your blockchain needs to be fully synced.

Connecting your internal Lightning Node in BTCPay

Regardless of the implementation (c-lightning or LND) you’ve decided to use, the process of connecting your internal Lightning Node in BTCPay Server is the same.

	If you do not have a store, create one.

	Store > Settings > Lightning > Modify

	Select “Use internal node”

	Click “Save”

	See “BTC Lightning node updated” message

	Make sure it is enabled

Your blockchain needs to be fully synced before you try to connect your internal Lightning Node, otherwise the connection will fail.

![BTCPay Server Lightning Network Setup 1](./img/lightning-node-setup/LightningNetworkNodeSetup1.png “BTCPay Server Lightning Network Setup 1”)

![BTCPay Server Lightning Network Setup 2](./img/lightning-node-setup/LightningNetworkNodeSetup2.png “Use the internal node”)

![BTCPay Server Lightning Network Setup 3](./img/lightning-node-setup/LightningNetworkNodeSetup3.png “Test the Lightning Network connection”)

To ensure that your Lightning node is connected and accessible for use in your store’s invoices, try to test your Lightning connection by clicking the “Public Node Info” link. Verify that a successful connection is displayed. If your internal node connection fails, make sure you have a Lightning implementation [enabled](./FAQ/LightningNetwork.md#i-previously-installed-btcpayserver-without-lightning-can-i-enable-it) on your server.

If you are unable to connect to your Lightning node, try [restarting your server](./FAQ/ServerSettings.md#how-to-restart-btcpay-server) or reviewing our [troubleshooting guide](./Troubleshooting.md). You will not be able to accept lightning payments in your store until your test connection shows as successful.

Connecting an external Lightning Node in BTCPay

If you would like to provide your own Lightning node connection string, select the “Use custom node” option. If you aren’t sure of which settings to use, there are some examples provided on this page to help guide you. This is typically used to connect an external Lightning node to a BTCPay Server.

![BTCPay Server Lightning Network Setup Custom](./img/lightning-node-setup/LightningNetworkNodeSetupCustom.png “BTCPay Server Lightning Network Setup Custom”)

Getting Started with BTCPay and LND

The easiest way to use LND implementation with BTCPay is to use [Ride The Lightning](https://github.com/ShahanaFarooqui/RTL) (RTL).

![Ride The Lightning in BTCPay Server](./img/RideTheLightning.png “Ride The Lightning in BTCPay Server”)

RTL is a device agnostic web user interface for Lightning Network that allows you to operate your node without leaving BTCPay, from your browser.

![Ride The Lightning Service in BTCPay Server](./img/server-settings/services/RideTheLightningServices.png “Ride The Lightning Service in BTCPay Server”)

To initiate RTL in BTCPay, Go to Server Settings > Services > RTL > See information.

Read the [RTL Getting Started Guide](https://medium.com/@suheb.khan/how-to-ride-the-lightning-447af999dcd2) for more details.

For remote use of your LND node on iOS or PC, you can use [Zap wallet integration](https://github.com/LN-Zap/zap-tutorials/blob/master/docs/desktop/btcpay-server.mdx).

[![LND BTCPay](https://img.youtube.com/vi/CWhTOunTb2Q/mqdefault.jpg “BTCPay Server - LND and ZAP”)](https://www.youtube.com/watch?v=CWhTOunTb2Q “BTCPay Server - LND and Zap”)

Besides Zap, there are a few more wallets that allow remote control of the LND node, [the Nayuta wallet](https://nayuta.co/) and the [ZeusLN](https://github.com/ZeusLN/zeus). Both of which have not yet extensively been tested by the community.

To remotely control your LND node via web browser, you can use Lightning Joule.

[![Joule](https://img.youtube.com/vi/a9_uHJhnKR4/mqdefault.jpg “BTCPay Server - LND and Joule”)](https://www.youtube.com/watch?v=a9_uHJhnKR4 “BTCPay Server - LND and Joule”)

LND Commands lncli

You can use lncli commands like described in their [API docs](https://api.lightning.community/) but instead of using lncli you use the shell script in of the btcpayserver-docker repository calles bitcoin-lncli.sh.

If you’re on Docker make sure you’re in docker directory.

`bash
sudo su -
cd btcpayserver-docker
./bitcoin-lncli.sh
`

So instead of running lncli getinfo you would run ./bitcoin-lncli.sh getinfo

Run ./bitcoin-lncli.sh –help to see a full list of commands or check above mentioned API docs.

Getting Started with BTCPay and c-lightning

The most straightforward way to start using the c-lightning implementation in BTCPay is to use [Spark Wallet](https://github.com/shesek/spark-wallet) integration. Just like Zap for LND, Spark is a graphical interface of your internal c-lightning node.

You can use Spark as an internal or external wallet. Internal wallet allows users to use Spark via the web-browser inside their BTCPay Server. You can also connect externally to a Spark mobile or desktop app just by scanning a QR code.

[![BTCPay Server - c-lightning and Spark](https://img.youtube.com/vi/uV1R6IQpmg8/mqdefault.jpg “BTCPay Server - c-lightning and Spark”)](https://www.youtube.com/watch?v=uV1R6IQpmg8 “BTCPay Server - c-lightning and Spark”)

Go to Server Settings > Services > Spark Server > See information

![Accessing Spark wallet](./img/SparkConnect.jpg “Accessing Spark wallet”)

![Accessing Spark wallet](./img/SparkConnect2.jpg.png “Accessing Spark wallet”)

c-lightning Commands lightning-cli

To use clightning CLI it is the same like above for lncli but instead you use the shell script bitcoin-lightning-cli.sh

If you’re on Docker make sure you’re in docker directory.

`bash
sudo su -
cd btcpayserver-docker
./bitcoin-lightning-cli.sh
`

E.g. to list all commands: ./bitcoin-lightning-cli.sh help
or show info about the node ./bitcoin-lightning-cli.sh getinfo

Lapps (Lightning Network Apps)

[Lapps](https://blockstream.com/2018/03/29/blockstreams-week-of-lapps-ends/) are applications built on top of the [Lightning Charge](https://blockstream.com/2018/01/16/lightning-charge/), a complimentary package that allows users and developers to easier use and develop on top of c-lightning. If you decided to use c-lightning, you can easily connect your BTCPay to any of the Lapps.

BTCPay exposes all the necessary information required to connect your internal BTCPay c-lightning node to a Lightning Network App. Go to Server Settings > Services > Lightning charge server > See information > Credentials.

Below are videos that showcase how to connect some of the lapps to your BTCPay.

[![BTCPay Server - c-lightning and lapps intro](https://img.youtube.com/vi/6EHNq1anD1k/mqdefault.jpg)](https://www.youtube.com/watch?v=6EHNq1anD1k “BTCPay Server - c-lightning and lapps intro”)

[![“BTCPay Server - c-lightning and lapps publisher](https://img.youtube.com/vi/ZbM3jcxau0o/mqdefault.jpg)](https://www.youtube.com/watch?v=ZbM3jcxau0o “BTCPay Server - c-lightning and lapps publisher”)

[![BTCPay Server - c-lightning and lapps woo lightning](https://img.youtube.com/vi/EYrsU3LGpbI/mqdefault.jpg)](https://www.youtube.com/watch?v=EYrsU3LGpbI “BTCPay Server - c-lightning and lapps woo lightning”)

 # BTCPay Magento Integration

If you’re using Magento, an open-source e-commerce platform written in PHP, you can integrate BTCPay Server and use it as a payment processor.

Magento 1

	Download [BTCPay Magento Plugin](https://github.com/btcpayserver/magento-plugin)

	Follow the [quick-start guide here](https://github.com/btcpayserver/magento-plugin/blob/master/GUIDE.md)

Magento 2

We recommend using the Magento 2 module developed by [Storefront.be](https://www.storefront.be), since it is the most feature-complete and robust. Storefront is also committed to maintaining the module as newer Magento versions are released.

The Magento 2 module is available for free at https://github.com/storefront-bvba/magento2-btcpay-module

 # Notifications

Notifications to monitor BTCPay Server events can be configured in several different ways.

	[Notification Alerts](#notification-alerts)

	[Server level SMTP (Email)](#server-emails)

	[Store level SMTP (Email)](#store-emails)

	[Store level Webhooks](https://docs.btcpayserver.org/API/Greenfield/v1/#tag/Webhooks)

Notification Alerts

Click the notification icon in the main header to view the current notifications. The notification page shows the status of all current notifications such as invoice events, payouts, version updates, etc. Notifications can be marked as seen from the notifications dropdown or the notifications page.

![BTCPay Notifications](./img/notifications/notification-page.png “BTCPay Notifications”)

Each user registered on the server can manage the notifications they receive.

![BTCPay Manage Notifications](./img/notifications/notification-manage.png “BTCPay Manage Notifications”)

Server Emails

Emails can be sent from the server-level of BTCPay. These are [user emails](#user-emails). Admins can setup server SMTP in:

Server Settings > Email server > [Setup](#smtp-email-setup)

Store Emails

Emails can be sent from the store-level of BTCPay. These emails are for store related events such as invoices. Users can setup store SMTP in:

Store Settings > General Settings > Services > Email > [Setup](#smtp-email-setup)

SMTP Email Setup

Use the Quick fill settings dropdown for commonly used email client setup parameters. Send yourself a test email from the same page to verify your setup parameters work properly.

![BTCPay Email SMTP](./img/smtp/smtp-setup.png “BTCPay Email SMTP”)

Each email client may have different requirements for setting up SMTP. For more information see this [SMTP FAQ](./FAQ/ServerSettings.md#how-to-configure-smtp-settings-in-btcpay) or refer to your email provider’s documentation.

User Emails

There are various user emails built-in to your BTCPay Server to communicate with your users.

:::warning
User emails will only be sent if SMTP is enabled for the server.
::

- [Forgot Password](#forgot-password-email)
- [New User Confirmation](#new-user-confirmation-email)
- [New User Invitation](#new-user-invitation-email)
- [Custom Emails](#custom-emails)

Forgot Password Email

This email can be sent to users who have lost their password. If SMTP is not enabled on the server, there is [no easy way](./FAQ/ServerSettings.md#forgot-btcpay-admin-password) to reset any user passwords including the server admin’s password. Be sure to save your password in a safe place or setup email for your server.

New User Confirmation Email

This email is used to confirm new user account registration. In order to reduce spam account registration, email confirmation may be required by the server admin (set in server settings policies). New users can click the link in this email to verify their account to complete their registration process.

New User Invitation Email

Send an invitation email to [invite a new user](./FAQ/ServerSettings.md#how-to-add-a-new-user-by-invite) to register an account on your server. This can be used to keep server registration closed to the public but still invite new users.

Custom Emails
Custom emails can be created using the BTCPay Server Transmuter preset [Email Receipts](https://docs.btcpayserver.org/Transmuter/EmailReceiptsPreset/#transmuter-email-receipts-setup).

 # BTCPay Server Payjoin Guide

This document explains how to use BTCPay Server’s Payjoin feature. For a detailed, technical explanation of how payjoin is implemented, check [BIP78](https://github.com/bitcoin/bips/blob/master/bip-0078.mediawiki)

You can follow this video to better understand what payjoin is and how to use it.

[![How to use Payjoin with BTCPay Server](https://img.youtube.com/vi/-Wrqv6nSmAM/mqdefault.jpg)](https://www.youtube.com/watch?v=-Wrqv6nSmAM “How to use Payjoin with BTCPay Server”)

Enabling Payjoin as a merchant

	Create a store

	Configure a [hot wallet](./CreateWallet.md#hot-wallet) for your derivation scheme. Be sure to use either segwit or segwit wrapped as the address type.

	Enable Payjoin/P2EP in the “General Settings” and click “Save”

It’s important to note that you will need at least 1 UTXO for payjoin to work.

![Receive PayJoin in BTCPay Server](./img/payjoin/Payjoin_Guide_Receive_1.png “Receive PayJoin in BTCPay Server”)

![Receive PayJoin in BTCPay Server](./img/payjoin/Payjoin_Guide_Receive_2.png “Receive PayJoin in BTCPay Server”)

![Receive PayJoin in BTCPay Server](./img/payjoin/Payjoin_Guide_Receive_3.png “Receive PayJoin in BTCPay Server”)

Paying to Payjoin as a user

The [BTCPay Wallet](./Wallet.md) supports Payjoin.

	Retrieve the BIP21 payment link from a BTCPay Server invoice which has payjoin enabled by either:
* Scan the QR code with the camera scanning feature
* Copy the link from the “Open in wallet” button and paste it in the “Parse BIP21” prompt

	The send form should be populated with the payment details. You can check if the invoice supports payjoin by expanding the “advanced settings” and see if there is a “Payjoin endpoint” input with a url.

	Sign your transaction using either BTCPay Server’s hardware wallet support via [BTCPay Vault](./HardwareWalletIntegration.md) or the [hot wallet](./CreateWallet.md#hot-wallet) feature.

	Once your original transaction is ready, you will be given the option to either Broadcast (Payjoin) or to Broadcast (Simple). Choose Broadcast (Payjoin).

	The payjoin server will propose a new special transaction, if possible. If the payjoin server is unable to do the payjoin, the original transaction is broadcast instead.

	If you are using a hardware wallet, you will be asked to sign the payjoin transaction again (the hot wallet feature signs the transaction for you automatically).

	Congratulations, you’ve just helped improve Bitcoin’s fungibility and your financial sovereignity!

![Receive PayJoin in BTCPay Server](./img/payjoin/Payjoin_Guide_Pay_1.png “Receive PayJoin in BTCPay Server”)

![Receive PayJoin in BTCPay Server](./img/payjoin/Payjoin_Guide_Pay_2.png “Receive PayJoin in BTCPay Server”)

![Receive PayJoin in BTCPay Server](./img/payjoin/Payjoin_Guide_Pay_3.png “Receive PayJoin in BTCPay Server”)

![Receive PayJoin in BTCPay Server](./img/payjoin/Payjoin_Guide_Pay_4.png “Receive PayJoin in BTCPay Server”)

Why did a payjoin not happen?

There’s multiple reasons for this:

	The store did not have any utxos to contribute towards a payjoin

	Your wallet does not use the same format as the store’s (essential to not raise suspicion to analysis companies)

	You are not using segwit or p2sh wrapped segwit.

	The payjoin server is not available

Supported wallets

Please contact and encourage your wallet developers to add support. The more widespread the usage of payjoin, the more broken the heuristics used by blockchain analysis companies become and can effectively trace your financial history. If you are a wallet developer, please [contact us](./Community.md) if you need help or have feedback.

 # Payment Requests

Payment Requests are a feature which allows BTCPay store owners to create long-lived invoices.
Funds paid to a payment request use the exchange rate at the time of payment.
This allows users to make payments at their convenience without having to negotiate or verify exchange rates with the store owner at the time of payment.

Users can pay requests in partial payments.
The payment request will remain valid until it is paid in full or if the store owner requires an expiration time.
Addresses are never reused. A new address is generated each time the user clicks pay to create an invoice for the payment request.

Store owners can also print payment requests (or export invoice data) for record keeping and accounting.
BTCPay automatically labels invoices as Payment Requests in your store’s invoice list.

Payment Requests Video

[![BTCPay Server Payment Requests](https://img.youtube.com/vi/j6CvwDPvfzQ/mqdefault.jpg)](https://www.youtube.com/watch?v=j6CvwDPvfzQ “BTCPay Server Payment Requests”)

Customize Your Payment Requests

	Invoice Amount - Set Requested Payment Amount

	Denomination - Show Requested Amount in Fiat or Cryptocurrency

	Payment Quantity - Allow only single payments or partial payments

	Expiration Time - Allow payments until a date or without expiry

	Description - Text Editor, Data Tables, Embed Photos & Videos

	Appearance - Color and Style with CSS Themes

Create a Payment Request

Click Payment Requests > Create new payment request

![Create Payment Request](./img/payment-requests/CreatePaymentRequest.png)

Provide the Request Name, Amount, Display Denomination, Associated Store, Expiration Time & Description (Optional)

Select the option Allow payee to create invoices in their own denomination if you want to allow partial payments to be made.

:::warning
Payment requests are store-dependent, which means that each payment request is associated with a store during creation.
Be sure to have a wallet connected to your store which the payment request belongs to.
::

Click Save & View to review your payment request.

![View New Payment Request](./img/payment-requests/NewPaymentRequest.png)

BTCPay creates a URL for the payment request. Share this URL to view your payment request.

Paid Request for Payment

Both the payee and requester can view the status of the payment request after sending payment.
The status will appear as Settled if payment has been received in full.
If only partial payment was made, the Amount Due will show the balance due.

![View Paid Payment Request](./img/payment-requests/PaidPaymentRequest.png)

Customize Payment Requests

The request’s description content can be edited using the payment request’s text editor.
If you want to use additional color themes or custom css styling, both options are available.

Non-technical users can use a [bootstrap theme](./Development/Theme.md#2-bootstrap-themes).
Further customization can be done by providing additional CSS code, like shown below …

```css
:root {


–btcpay-font-family-base: “Source Sans Pro”, -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto, “Helvetica Neue”, Arial, sans-serif;
–btcpay-primary: #7D4698;
–btcpay-primary-accent: #59316B;
–btcpay-body-text: #333A41;
–btcpay-body-bg: #FFF;
–btcpay-bg-tile: #F8F9FA;




}
#mainNav {


color: white;
background: linear-gradient(#59316B, #331840);




}
#mainNav .btn-link {


color: white;





}

![Customized Payment Request css](./img/payment-requests/PaymentRequestCustomCSS.png)




            

          

      

      

    

  

    
      
          
            
  # Prestashop integration

This document explains how to integrate BTCPay Server into your PrestaShop store.
If you do not have a store yet, follow [this step by step article](https://blog.templatetoaster.com/how-to-install-prestashop/) to create one from scratch.

To integrate BTCPay Server into an existing PrestaShop store, follow the steps below.

## 0. Server Requirements

Please ensure that you meet the following requirements before installing this plugin.


	You are using PHP 7.3 or higher


	Your PrestaShop is version 1.7.7.0 or higher.


	The curl, gd, intl, json, and mbstring PHP extensions are available


	You have a BTCPay Server, either [self-hosted](/Deployment/README.md) or [hosted by a third-party](/Deployment/ThirdPartyHosting.md)


	[You’ve a registered account on the instance](./RegisterAccount.md)


	[You’ve a BTCPay store on the instance](./CreateStore.md)


	[You’ve a wallet connected to your store](./WalletSetup.md)




## 1. Install BTCPay Plugin


	[Download the latest BTCPay plugin](https://github.com/btcpayserver/prestashop-plugin/releases)


	PrestaShop > Modules > Module Manager > Upload a module


	Upload the .zip-file you just downloaded


	Click on configure to setup the module




![BTCPay PrestaShop plugin installation](./img/BTCPay-PrestaShop-Modules-Install.jpg)

## 2. Pairing the store

BTCPay PrestaShop plugin is a bridge between your server (payment processor) and your e-commerce store.
No matter if you’re using a self-hosted or third-party solution from step 2, the pairing process is identical.


	In the BTCPay server url-field, enter the full URL of your host (including the https) – https://btcpay.mydomain.com


	Select the default transaction speed (this will change how much BTCPay recommends as transaction fee)


	Select the relevant order mode for your store (order is created before or after payment)


	Go to your BTCPay server, select a store, open its settings and select “Access Tokens”.


	Click on “Create a new token”, select your store and then approve.





5.1. You will see: “Server initiated pairing code: XXXX”.





	Enter your pairing code.


	Press save. Prestashop will now attempt to make a connection with your BTCPayServer.


	A message will be shown if the connection was successful.


	It’s recommended to do a test purchase.




## 3. Contribute

BTCPay is built and maintained entirely by volunteer contributors around the internet. We welcome and appreciate new contributions.

Contributors looking to help out, before opening a pull request, please [create an issue](https://github.com/btcpayserver/prestashop-plugin/issues/new/choose)
or join [our community chat](https://chat.btcpayserver.org) to get early feedback, discuss best ways to tackle the problem and to ensure there is no work duplication.

## PrestaShop Support

PrestaShop support can be found through its official channels.


	[Homepage](https://www.prestashop.com)


	[Documentation](https://doc.prestashop.com)


	[Support Forums](https://www.prestashop.com/forums)






            

          

      

      

    

  

    
      
          
            
  # Pull payments

## Introduction

Traditionally, to make a Bitcoin payment, a receiver shares their bitcoin address and the sender later sends money to this address.
Such system is called Push payment as the sender initiates the payment while the receiver may be unavailable, in effect pushing the payment to the receiver.

However, what about reversing the role?

What if, instead of a sender pushing the payment, the sender allows the receiver to pull the payment at a time the receiver seems fit?
This is the concept of Pull payment. This allows several new applications such as:


	A subscription service (where the subscriber allows the service to pull money every x amount of time)


	Refunds (where the merchant allows the customer to pull the refund money to his wallet when it seems fit)


	Time-based billing for freelancers (where the person hiring allows the freelance to pull money to his wallet as time get reported)


	Patronage (where the patron allows the recipient to pull money every month to continue supporting their work)


	Automatic selling (where a customer of an exchange would allow an exchange to pull money from their wallet to automatically sell every month)


	Balance withdraw system (where a high-volume service allows users to request withdrawals from their balance, the service can then easily batch all the payouts to many users, at fixed intervals)




You can also follow this video:

[![What is a pull payment](https://img.youtube.com/vi/-e8lPd9NtPs/mqdefault.jpg)](https://www.youtube.com/watch?v=-e8lPd9NtPs “What is a pull payment”)

## Concept

When a sender configures a Pull payment, they can configure a number of properties:
* Start date
* End date (optional)
* A period (optional)
* A limit amount
* A unit (such as USD, BTC, Hours)
* Available payment methods

After this, the sender can share the pull payment using a link with the receiver, allowing the receiver to create a payout.
The receiver will choose for their payout:
* Which payment method to use
* Where to send the money

Once a payout is created, it will count toward the pull payment’s limit for the current period.
The sender will then approve the payout by setting the rate in which the payout will be sent, and proceed to payment.

For the sender, we provide an easy to use way to batch the payment of several payouts from the [BTCPay Internal Wallet](./Wallet.md).

```


+———-+ +——————-+ +————+
Sender		BTCPay Server		Receiver
+———-+ +——————-+ +————+

| |

| |

Create | |

+—————————>+ |
Pull payment	
Share	
+——————————————————–>+	
Pull payment	
	Create
+<—————————+	
	Payout
Approve	
+—————————>+ v	
Payout	
Pay	
+—————————>+	
Payout	
v v


```

Note that BTCPay Server does not approve and pay a payout automatically. In future releases, we will look into payouts which are approved to be paid out automatically under the correct conditions.
Instead, a notification will appear for the sender, giving the sender the choice to approve and pay the payouts.

## Greenfield API

We provide a full API to both the sender and receiver that is documented in the /docs page of your instance. (or on our [public link](https://docs.btcpayserver.org/API/Greenfield/v1/) page)

Since our API exposes the full capability of pull payments, a sender can automate payments for his own need.

## User interface

The user interface only allows a subset of what is possible.

### Create a pull payment

1. Go to your wallet page / pull payments
![BTCPay Server Pull Payment](./img/pull-payments/1.png “BTCPay Server Pull Payment”)
2. Click on Create a new pull payment
![BTCPay Server Pull Payment](./img/pull-payments/2.png “BTCPay Server Pull Payment”)
3. Fill out the pull payment information, click Create
![BTCPay Server Pull Payment](./img/pull-payments/3.png “BTCPay Server Pull Payment”)
4. Go to the pull payment page by clicking on View
5. Share this page with the payment receiver
![BTCPay Server Pull Payment](./img/pull-payments/4.png “BTCPay Server Pull Payment”)
5. As the receiver, fill out how much USD you claim, and to which address should the money be sent.
![BTCPay Server Pull Payment](./img/pull-payments/5.png “BTCPay Server Pull Payment”)

### Approve and pay a payout
1. The sender get notified when the receiver is pulling money
![6](./img/pull-payments/6.png)
2. Clicking on the notification brings the sender to a page listing all outstanding payouts
![7](./img/pull-payments/7.png)
3. Check the payout to approve and pay and confirm
![8](./img/pull-payments/8.png)
4. You are then brought to the normal wallet user interface of BTCPay Server

:::warning
Clicking on Confirm selected payouts will use the current exchange rate of your wallet’s store settings. The rate is then fixed, even if you don’t complete the payment. Payments made at a later time will use this previously confirmed rate.
::

## Additional use cases for the Pull Payments feature





The Pull Payment feature can be used in multiple applications, the first one being [Refunds](./Refund.md).



            

          

      

      

    

  

    
      
          
            
  —
layout: Homepage
heroImage: /img/btcpay-logo.svg
heroText: BTCPay Server Documentation
tagline: Start Accepting Bitcoin Payments With 0% Fees & No Third-party
features:
- title: User Guide


details: Guide for users and merchants using BTCPay Server.
actionText: User Docs  ❯
actionLink: /Guide/





	title: Deployment
details: Setting up and maintaining your BTCPay Server.
actionText: Deployment Docs  ❯
actionLink: /Deployment/


	title: Development
details: Docs for developers building on BTCPay Server.
actionText: Developers Docs  ❯
actionLink: /Development/




footer:  Content Released under MIT license.
—


	<div class=”topics”>
	<h3>Explore by topic</h3>
<ul>



	<li>
	<a href=”/BTCPayVsOthers/”>BTCPay Server vs.<br>Other Payment Processors</a>





</li>
<li>


<a href=”/Walkthrough/”>Feature Walkthrough</a>




</li>
<li>


<a href=”/Deployment/RPi4/”>Deploy on a Raspberry Pi</a>




</li>
<li>


<a href=”/WalletSetup/”>Wallet Setup</a>




</li>
<li>


<a href=”/Apps/”>BTCPay Server Apps</a>




</li>
<li>


<a href=”/LightningNetwork/”>Lightning Network</a>




</li>
<li>


<a href=”/FAQ/”>Frequently Asked Questions<br>and Common Issues</a>




</li>
<li>


<a href=”/Development/”>BTCPay Server Architecture</a>




</li>
<li>


<a href=”/WooCommerce/”>WooCommerce Integration</a>




</li>




</ul>





</div>


	<div class=”supporters”>
	<h3>Our Supporters</h3>
<p>


The BTCPay&nbsp;Server Project is proudly supported by these entities through the
<a href=”https://foundation.btcpayserver.org/” target=”_blank” rel=”noopener noreferrer”>BTCPay&nbsp;Server Foundation</a>.




</p>
<table>



	<tbody>
	
	<tr>
	
	<td align=”center” valign=”top” width=”14.285714285714285714285714285714%”>
	
	<a href=”https://twitter.com/krakenfx” target=”_blank”>
	<img  src=”https://raw.githubusercontent.com/btcpayserver/btcpayserver-doc/master/docs/img/kraken-logo-stacked-purple-RGB-2019.svg?sanitize=true” alt=”Kraken” loading=”lazy” height=100>
<br/>
<span>Kraken</span>





</a>





</td>
<td align=”center” valign=”top” width=”14.285714285714285714285714285714%”>



	<a href=”https://twitter.com/sqcrypto” target=”_blank”>
	<img  src=”https://raw.githubusercontent.com/btcpayserver/btcpayserver/master/BTCPayServer/wwwroot/img/squarecrypto.svg?sanitize=true” alt=”Square Crypto” loading=”lazy” height=100>
<br/>
<span>Square Crypto</span>





</a>




</td>
<td align=”center” valign=”top” width=”14.285714285714285714285714285714%”>



	<a href=”https://pnxbet.com” target=”_blank”>
	<img  src=”https://raw.githubusercontent.com/btcpayserver/btcpayserver/master/BTCPayServer/wwwroot/img/pnxbet.png?sanitize=true” alt=”PNXBET” loading=”lazy” height=100>
<br/>
<span>PNXBET</span>





</a>




</td>
<td align=”center” valign=”top” width=”14.285714285714285714285714285714%”>



	<a href=”https://www.bailliegifford.com/” target=”_blank”>
	<img  src=”https://raw.githubusercontent.com/btcpayserver/btcpayserver/master/BTCPayServer/wwwroot/img/bailliegifford.svg?sanitize=true” alt=”Baillie Gifford” loading=”lazy” height=100>
<br/>
<span>Baillie Gifford</span>





</a>




</td>
<td align=”center” valign=”top” width=”14.285714285714285714285714285714%”>



	<a href=”https://acinq.co/” target=”_blank”>
	<img  src=”https://raw.githubusercontent.com/btcpayserver/btcpayserver/master/BTCPayServer/wwwroot/img/acinq-logo.svg?sanitize=true” alt=”ACINQ” loading=”lazy” height=100>
<br/>
<span>ACINQ</span>





</a>




</td>
<td align=”center” valign=”top” width=”14.285714285714285714285714285714%”>



	<a href=”https://lunanode.com” target=”_blank”>
	<img  src=”https://raw.githubusercontent.com/btcpayserver/btcpayserver/master/BTCPayServer/wwwroot/img/lunanode.svg?sanitize=true” alt=”LunaNode” loading=”lazy” height=100>
<br/>
<span>LunaNode</span>





</a>




</td>
</tr>
<tr>
<td align=”center” valign=”top” width=”14.285714285714285714285714285714%”>



	<a href=”https://walletofsatoshi.com/” target=”_blank”>
	<img  src=”https://raw.githubusercontent.com/btcpayserver/btcpayserver/master/BTCPayServer/wwwroot/img/walletofsatoshi.svg?sanitize=true” alt=”Wallet of Satoshi” loading=”lazy” height=100>
<br/>
<span>Wallet of Satoshi</span>





</a>




</td>
<td align=”center” valign=”top” width=”14.285714285714285714285714285714%”>



	<a href=”https://nomics.com/” target=”_blank”>
	<img  src=”https://raw.githubusercontent.com/btcpayserver/btcpayserver/master/BTCPayServer/wwwroot/img/nomics.svg?sanitize=true” alt=”Nomics” loading=”lazy” height=100>
<br/>
<span>Nomics</span>





</a>




</td>
</td>
<td align=”center” valign=”top” width=”14.285714285714285714285714285714%”>



	<a href=”https://coincards.com/” target=”_blank”>
	<img  src=”https://raw.githubusercontent.com/btcpayserver/btcpayserver/master/BTCPayServer/wwwroot/img/coincards.svg?sanitize=true” alt=”Coincards” loading=”lazy” height=100>
<br/>
<span>Coincards</span>





</a>




</td>





</tr>





</tbody>




</table>





</div>



            

          

      

      

    

  

    
      
          
            
  # Refunds

:::tip
If you are looking for information about requesting a refund from a merchant, please refer to this [FAQ](./FAQ/General.md#what-if-i-have-a-problem-with-a-paid-invoice)
::

**Refunds** are one of the applications built on top of the [Pull Payments](./PullPayments.md) feature.





Up until now, merchants had to manually issue refunds.
The process required a lot of back and forth between a sender and a receiver. The merchant had to ask for a refund address, calculate the preferred rate, manually add that to the wallet and broadcast the transaction.

A merchant just needs to go to the invoice, click Issue refund , select the appropriate rate and share a link with a customer.

The customer will then input their address and claim a refund. Once a customer claims a refund, the merchant will get a notification and can authorize it in a click.
Future versions of BTCPay Server will enable instant payouts as an option, without the need for merchant approval.

## Create a refund


	After an invoice has been confirmed, go in the Invoices page and click Details on the invoice.




![BTCPay Server refund feature](./img/pull-payments/9.png “BTCPay Server refund feature”)


	Click Issue a refund




![BTCPay Server refund feature](./img/pull-payments/10.png “BTCPay Server refund feature”)


	Select the way you want to issue the refund




![BTCPay Server refund feature](./img/pull-payments/11.png “BTCPay Server refund feature”)


	Share the pull payment link with the customer




![BTCPay Server refund feature](./img/pull-payments/12.png “BTCPay Server refund feature”)



            

          

      

      

    

  

    
      
          
            
  # (1) Register account

This page relates to registering an account on a BTCPay Server instance of your own, or using a third-party host.

To register a demo account, visit the [official demo](https://mainnet.demo.btcpayserver.org/Account/Login).

To deploy an instance of your own, see [choosing a deployment method](/Deployment/README.md).

A non-exhaustive list of third-party hosts can be found on the BTCPay Server [directory](https://directory.btcpayserver.org/filter/hosts).

## Account Registration

The first step in setting up your BTCPay Server is creating a user account. The first created account on a newly-deployed BTCPay Server is automatically - admin.

To register, visit your BTCPay Server URL and fill in the account registration form on the right. Input your password, password confirmation, e-mail and click “Register”. You will automatically be logged in. If you’re using a [third-party host](/Deployment/ThirdPartyHosting.md), you may be asked to verify your e-mail address to confirm the registration.

![BTCPay Server registration](./img/btcpay-registration-page.jpg “BTCPay Server registration”)

### Configuring e-mail

It’s recommended that server admins [configure SMTP settings](./FAQ/ServerSettings.md#how-to-configure-smtp-settings-in-btcpay). E-mail setup enables easier password reset for the instance users in case of forgotten credentials.

To allow other users to access your server, you need to enable registration in Server Settings > Policies.

### Two-factor authentication

For further enhancing security and protecting your account, it’s recommended to enable two-factor authentication (both 2FA and U2F are supported). To enable 2FA or U2F, click on the user setting icon in the header menu.

*Proceed to the next step - [Creating a store](./CreateStore.md).*



            

          

      

      

    

  

    
      
          
            
  # BTCPay Server and Shopify Integration

The following document guides you through setting up BTCPay Server with [Shopify](https://www.shopify.com/).

[![BTCPay Server and Shopify](https://img.youtube.com/vi/0Z8vraKab64/mqdefault.jpg)](https://www.youtube.com/watch?v=0Z8vraKab64 “BTCPay Server Shopify Integration”)

## Prerequisites:


	Shopify account


	[BTCPay Server](Deployment.md) self-hosted or run by a [third-party host](/Deployment/ThirdPartyHosting.md) v1.0.5.6 or later.


	[Created BTCPay Server store](CreateStore.md) with [wallet set up](WalletSetup.md)




## Setting up BTCPay Server with Shopify


	In your Shopify, go to Apps > Manage Private apps (at the bottom of the page) and Create a private app. If private apps are disabled, enable private apps development.


	Fill in required  details (name and email) and click on the Show inactive Admin API permissions


	Give Read and write permission tp Orders and Save




![Shopify Setup 1](./img/Shopify/Shopify1.png “BTCPay Server Shopify setup”)

![Shopify Setup 2](./img/Shopify/Shopify2.png “BTCPay Server Shopify setup”)

![Shopify Setup 3](./img/Shopify/Shopify3.png “BTCPay Server Shopify setup”)

![Shopify Setup 4](./img/Shopify/Shopify4.png “BTCPay Server Shopify setup”)


	Copy the Example URL from the Admin API section.


	In your BTCPay Server go to Store > Settings > Integrations


	Paste the Example URL from Shopify and click Connect to Shopify




![Shopify Setup 5](./img/Shopify/Shopify5.png “BTCPay Server Shopify setup”)

![Shopify Setup 5a](./img/Shopify/Shopify5a.png “BTCPay Server Shopify setup”)


	On the BTCPay Server Integration page, copy the script shown in the yellow box. Go back to Shopify Settings > Checkout > Order processing > Additional Scripts and paste the script (including the opening and closing tag </script> ).




![Shopify Setup 6](./img/Shopify/Shopify6.png “BTCPay Server Shopify setup”)

![Shopify Setup 7](./img/Shopify/Shopify7.png “BTCPay Server Shopify setup”)

![Shopify Setup 8](./img/Shopify/Shopify8.png “BTCPay Server Shopify setup”)


	Finally, in Shopify Settings > Payment Providers > Manual Payment Methods add a Custom payment methods named  Bitcoin with BTCPay Server and Activate it.




![Shopify Setup 9](./img/Shopify/Shopify9.png “BTCPay Server Shopify setup”)

![Shopify Setup 10](./img/Shopify/Shopify10.png “BTCPay Server Shopify setup”)

:::tip
Custom Payment method name must contain at least one of the following words: bitcoin, btcpayserver, btcpay server or btc to work.
::



            

          

      

      

    

  

    
      
          
            
  # Support

This project is open source, and is not a company. Instead we rely on a network of contributors and users to provide support.

## Free support

Problem? Don’t worry, someone else has probably been through that before you.


	First have a look at our [user documentation](./README.md) and [Frequently Asked Questions](./FAQ/readme.md).


	If your issue is not referenced there, or you want to request a new feature, please open a [github issue](https://github.com/btcpayserver/btcpayserver/issues).


	If you have more general questions about BTCPay, the way it works and why you should use it, you’re welcome on our [Mattermost Chat](https://chat.btcpayserver.org/) or [Telegram](https://t.me/btcpayserver)




Getting a proper support also depends on how you formulate your questions. Read our [troubleshooting guidelines](./Troubleshooting.md).

## Paid support

Here are some members of the community that you can contact to get additional paid support:

### d11n

> I can help with the initial setup of your BTCPay Server instance and integrating it with WooCommerce. I can also help with design customizations and client applications building on the BTCPay Server API.

Contact: mail@d11n.net, @d11n on [Mattermost](https://chat.btcpayserver.org/), [Twitter](https://twitter.com/_d11n_)

### Esky33

> BTCPayServer local or cloud installation (Lunanode/other VPS). I can help with the initial setup/deployment,

Contact: support@btcpayjungle.com - @Esky33 on [Mattermost](https://chat.btcpayserver.org/) -  [Twitter](https://twitter.com/Esky33junglist)

### Graeme Conradie

> I can help you implement BTCPay Server inside your environment and also help with the supporting systems, your site, your hosting architecture, your security. I find what people need is a good solid starting point, and some basic guidance on best practice.

Contact: graeme@fintechsystems.ltd, @Graeme on [FinChat](https://chat.fintechsystems.ltd), @GraemeConradie on [Mattermost](https://chat.btcpayserver.org/), [Twitter](https://twitter.com/GraemeConradie), [Website](https://graemeconradie.com/)

### Hubik Tomas

> I can help with initial setup/deployment (currently with Azure, but I am planning to play with non-Azure as well) and integration with PrestaShop. I was also playing with design customization of the payment window, scripting of exchange rates etc.

Contact: hubik.tomas@gmail.com

### Norman Moore

> BTCPayServer local or cloud installation (Azure/other VPS).  Can also help with WooCommerce Plugin configuration and BTCPayServer Store/App creation.

Contact: support@lightninginabox.co, [Web](https://lightninginabox.co)

### Wouter Samaey / Storefront.be

> I can help you integrate BTCPayServer with Magento 1, 2 or OpenMage and most other PHP-based eCommerce backends + API development and automation + BTCPay Server setup & Linux server management.

Contact: wouter.samaey@storefront.be - [Website](https://www.storefront.be) - [Twitter](https://twitter.com/woutersamaey)



            

          

      

      

    

  

    
      
          
            
  # Troubleshooting an issue in BTCPay Server

Facing a problem is never fun. This document explains the most common workflow and steps you should take to identify the issue you’re having more easily and hopefully solve it yourself or with community help.

Identifying the problem is crucial.

## 1. Replicating the issue

First and foremost, try to determine when the issue happens.
Try to replicate the problem.
Try to update and restart your server to verify you can reproduce your issue.
If you think it will describe your issue better, take a screenshot.

### 1.1 Updating the server

Check [your version of BTCPay](./FAQ/ServerSettings.md#how-can-i-see-my-btcpay-version).
If it is much older than the [latest version](https://github.com/btcpayserver/btcpayserver/releases) of BTCPay, [updating your server](./FAQ/ServerSettings.md#how-to-update-btcpay-server) may resolve the issue.

### 1.2 Restarting the server

Restarting your server is an easy way to solve many of the most common BTCPay Server issues.
You may need to [SSH into your server](./FAQ/ServerSettings.md#how-to-ssh-into-my-btcpay-running-on-vps) to restart it.

### 1.3 Restarting a service

Some issues you may only need to restart a particular service in your BTCPay Server deployment.
Such as restarting the letsencrypt container to renew the SSL certificate.

`bash
sudo su -
cd btcpayserver-docker
docker restart letsencrypt-nginx-proxy-companion
`

Use docker ps to find the name of a different service you would like to restart.

## 2. Looking through the logs

Logs can provide an essential piece of information.
In the next few paragraphs, we will describe how to get the log information for various parts of BTCPay.

### 2.1 BTCPay Logs

Since the v1.0.3.8, you can easily access BTCPay Server logs from the front-end.
If you are a server admin, go to Server Settings > Logs and open the logs file.
If you don’t know what a particular error in the logs means, make sure to mention it when troubleshooting.

If you would like more detailed logs and you’re using a Docker deployment, you can view logs of specific Docker containers using the command line.
See these [instructions to ssh](./FAQ/ServerSettings.md#how-to-ssh-into-my-btcpay-running-on-vps) into an instance of BTCPay running on a VPS.

Below is a general list of the container names used for BTCPay.


LOGS FOR | CONTAINER NAME  |



|-------|:——-:|
| BTCPayServer | generated_btcpayserver_1 |
| NBXplorer | generated_nbxplorer_1 |
| Bitcoind | btcpayserver_bitcoind |
| Postgres | generated_postgres_1 |
| proxy | letsencrypt-nginx-proxy-companion |
| Nginx | nginx-gen |
| Nginx | nginx |
| c-lightning | btcpayserver_clightning_bitcoin |
| LND | btcpayserver_lnd_bitcoin |
| RTL | generated_lnd_bitcoin_rtl_1 |
| Thunderhub| generated_bitcoin_thub_1 |
| LibrePatron | librepatron |
| Tor | tor-gen |
| Tor | tor |

Run the commands below to print logs by container name.
Replace the container name to view other container logs.

`bash
sudo su -
cd btcpayserver-docker
docker ps
docker logs --tail 100 generated_btcpayserver_1
`

### 2.2 Lightning Network Logs

Use the following if you’re having a problem with the Lightning Network.

### 2.2.1 - Lightning Network LND - Docker

There are a few ways to access your LND logs when using Docker.
First log in as root:

sudo su -

Navigate to the correct directory:

cd btcpayserver-docker

Find container name:

docker ps

Print logs by container name:

docker logs –tail 100 btcpayserver_lnd_bitcoin

Alternatively, you can quickly print logs by using container ID (only the first unique ID characters are needed, such as the two furthest left characters):

docker logs ‘add your container ID ‘

If for any reason you need more logs

sudo su -

cd /var/lib/docker/volumes/generated_lnd_bitcoin_datadir/_data/logs/bitcoin/mainnet/

inside that directory do ls

You will see something like lnd.log  lnd.log.13  lnd.log.15  lnd.log.16.gz  lnd.log.17.gz

To access uncompressed logs of those logs do cat lnd.log or if you want another one, use cat lnd.log.15

To access compressed logs in .gzip use gzip -d lnd.log.16.gz (in this case we’re accessing lnd.log.16.gz)

This should give you a new file, where you can do cat lnd.log.16

In case the above does not work, you may need to use install gzip first sudo apt-get install gzip

### 2.2.2 - Lightning Network c-lightning - Docker

sudo su -

docker ps

Find the c-lightning container ID.

docker logs ‘add your container ID here’

alternatively, use this

docker logs –tail 100 btcpayserver_clightning_bitcoin

You can also get log information with c-lightning cli command.

bitcoin-lightning-cli.sh getlog

## 2.3 - Bitcoin Node Logs

In addition to [looking at logs](#2-looking-through-the-logs) of your Bitcoind container, you can also use any of the [bitcoin-cli commands](https://developer.bitcoin.org/reference/rpc/index.html) to obtain information from your bitcoin node.
BTCPay includes a script to allow you to communicate with your Bitcoin node easily.

Inside the btcpayserver-docker folder, get the blockchain information using your node:

bitcoin-cli.sh getblockchaininfo

## 3. Finding a solution yourself (Google, FAQ, GitHub issues)

Even though setups differ, the chances that someone else experienced the same issue as yours are pretty high.
Take a few moments, Google around and see if you can solve it yourself.

### 3.1 BTCPay FAQ

We try to document the most common issues on the [Frequently Asked Questions page](./FAQ/README.md).
Take a look there and see if your question is recorded.

### 3.2 GitHub

When there’s an advanced technical issue, users usually open an issue on GitHub.
Take a look at the BTCPay GitHub repository and browse [search the closed issues](https://github.com/btcpayserver/btcpayserver/issues?q=is%3Aissue+is%3Aclosed).

### 3.3 Mattermost

Mattermost chat platform is great for similar issues, other users experienced before you.
On the top right-hand corner, click on the search and enter your query.

## 4. Asking for help

If you’re unable to solve the problem yourself, do not worry.
There’s an amid community ready to help you.

The better you describe the problem, the higher are the chances of getting a timely fix.
Be concise and provide as much relevant information as possible.
Be sure to include the [version you’re using](./FAQ/ServerSettings.md#how-can-i-see-my-btcpay-version) and describe your BTCPay Deployment Setup.
Try to explain what you’re trying to do and what’s the issue.
If you can provide the logs.
If you think it’s relevant, feel free to include a screenshot.

Here’s a good example of how to ask a question.

> I’m having a problem with XYZ. I can replicate the problem. My BTCPay version is 0.100.31, and I deployed my server on Digital Ocean by following Docker deployment guide. I’ve searched through the FAQ and closed GitHub issues, but there’s no solution to my problem. My BTCPay Setup is XYZ, and the issue is occurring when I do XYZ. Here are the logs I was able to get from my BTCPay instance. You can see the error in the image I attached.

:::warning Please note:
The community will not provide extensive support for custom deployments.
I.e. variations of [Manual Deployments](/Deployment/ManualDeployment.md) are expected to be used only for development purposes and by users with technical literacy with the ability to resolve deployment and maintenance issues on their own. This includes [Hardware-As-A-Service](/Deployment/HardwareAsAService.md) products (Nodl, RaspiBlitz, Umbrel, etc …)
::

### 4.1 Asking the community (general problems)





For quick answers to fundamental problems, it’s best to post a question in #support channel on [BTCPay Mattermost](https://chat.btcpayserver.org/btcpayserver/channels/support).

### 4.2 Opening an Issue on GitHub (advanced problems)

If you have a custom build setup and are facing a complex problem, [open an issue on GitHub](https://github.com/btcpayserver/btcpayserver/issues) so that developers can help you out.

### 4.3 Premium Support

Some community members provide paid support.
If you want a quicker help, check out the list of [members providing premium support](./Support.md).

### 4.4 Lightning Network Support

If you’re facing a technical problem with your Lightning Network implementation, you may want to ask questions in their respective communities.

#### 4.4.1 LND Support


	[LND GitHub](https://github.com/lightningnetwork/lnd/issues)


	[Lightning Community on Slack](https://lightningcommunity.slack.com)




#### 4.4.2 c-lightning Support


	[c-lightning GitHub](https://github.com/ElementsProject/lightning/issues)


	[c-lightning Telegram Group](https://t.me/lightningd)


	[c-lightning docs](https://lightning.readthedocs.io/)






            

          

      

      

    

  

    
      
          
            
  # Try it out

This section goes through the process of creating an account and store on our public BTCPay server. (For evaluation purpose)

You can also follow along in this video:

[![BTCPay - Introduction](https://img.youtube.com/vi/xh3Eac66qc4/mqdefault.jpg)](https://www.youtube.com/watch?v=xh3Eac66qc4 “BTCPay - Introduction”)

## Create your first invoice

For an in production setup, skip to [Mainnet](./TryItOut.md#mainnet)

### Testnet
First let’s create a new store:


	Go to the [Testnet website](https://testnet.demo.btcpayserver.org/)


	On the right side click on Create an account to [create an account](https://testnet.demo.btcpayserver.org/Account/Register) or Sign In if you already have an account.


	After having signed in, go to Stores and [create a new store](https://testnet.demo.btcpayserver.org/stores)




Let’s use Electrum to create a testnet wallet for your store:


	Download [Electrum](https://electrum.org)


	Run Electrum with parameter –testnet (i.e. on Mac OS using open -a Electrum.app –args –testnet)


	Click through the wizard and create a test wallet, using the default settings Electrum proposes


	After the wallet is set up, go to “Wallet” > “Information” in the Electrum menu.


	Copy the “Master Public Key” string (starting by *pub…)




Let’s configure the store so it uses your Electrum wallet:


	Go to the Settings page of your store in BTCPay


	On the “General Settings” page you will find the “Wallet” section - click the “Setup” button for configuring an on-chain wallet.


	Paste the “Master Public Key” copied from Electrum into the “Derivation Scheme” text field and click “Continue”


	Confirm the addresses by clicking on “Receive” in Electrum: The “Receiving address” should match the first address shown in BTCPay


	After that your test wallet should appear on the [Wallets page](https://testnet.demo.btcpayserver.org/wallets) of your BTCPay account




Then you can create an invoice, either through
* the “Invoice” menu on the website or
* the process documented on the [Custom integration](./CustomIntegration.md)

### Mainnet

First choose where to setup your store.
Either:
* Host your store on someone else’s BTCPay Server. You can find a list of third-party hosts [here](/Deployment/ThirdPartyHosting.md#where-is-the-list-of-btcpay-third-party-hosts).
* Or [deploy your own](/Deployment/README.md).

Click on the following links for detailed instructions on how to [Register an account](./RegisterAccount.md), [Create your first store](./CreateStore.md) and [Connect your own wallet](./WalletSetup.md)

Then you can create an invoice, either through
* The “Invoice” menu on the website or
* The process documented on the [Custom integration](./CustomIntegration.md)

See the [What’s Next](./WhatsNext.md) page for other options on how to continue exploring BTCPay.

## BTCPay Server Demo

To see BTCPay Server in action, visit our demo apps and stores or check out some of the stores using BTCPay Server in production.


	[BTCPay Demo Store](https://store.btcpayserver.org/)


	[Point of Sale Demo](https://mainnet.demo.btcpayserver.org/apps/87kj5yKay8mB4UUZcJhZH5TqDKMD3CznjwLjiu1oYZXe/pos)


	[In-production stores](https://directory.btcpayserver.org)






            

          

      

      

    

  

    
      
          
            
  # BTCPay Server Use Cases

Built with the community in mind, BTCPay Server is a feature-rich software with plenty of use-cases that can solve problems for different types of users.

![BTCPay UseCase Infographic](./img/infographics/BTCPayUseCaseInfographic.png “BTCPay Server UseCase Infographic”)

The software usage is by no means limited to the groups of users mentioned in this document.

## Merchants

By choosing BTCPay Server to process payments, merchants are:


	Saving money (no fees, no subscriptions)


	Cutting out the middle-man (Payments go directly to their wallet)


	Enhancing privacy for their customers (no address re-use, no information leaks to third parties)


	Saving time (easy integration and installation)


	Protecting themselves from interference in their business (self-sovereignty)




### Online Store

Merchants running an e-commerce business can easily [deploy BTCPay Server](/Deployment/README.md) and connect it to their store via integration plugins in just a few clicks.

BTCPay Server checkout is no different to any other payment gateway. The customer gets an invoice. They pay it by scanning a QR code or by copy-pasting the amount and the address. When their payment is confirmed, the merchant is notified via the e-commerce software, and can ship the item.

Take a look at [our demo online store](https://store.btcpayserver.org/).

### Physical Store

For brick and mortar stores, BTCPay Server has a [web-based Point of Sale](./Apps.md#point-of-sale-app). Similarly to the online store, the customer is presented with an invoice that he can pay on the spot. The POS app can be run on any web-connected device.

Take a look at [our demo POS app](https://mainnet.demo.btcpayserver.org/apps/3utBTfSKkW4gK7aQMd2hW5Bh9Fpa/pos).

[![BTCPay Server for local communities](https://img.youtube.com/vi/9n81qnzlPf8/mqdefault.jpg)](https://www.youtube.com/watch?v=9n81qnzlPf8 “BTCPay Server for local communities”)

## Self-sovereign individuals

Privacy-minded individuals can use BTCPay Server internal wallet for their everyday crypocurrency transactions without providing a private key. For self-hosted servers, the [internal wallet](./Wallet.md) relies on a full node, significantly enhances the privacy. [Hardware wallet integration](./HardwareWalletIntegration.md) allows the usage of a hardware wallet with a [full node](https://en.bitcoin.it/wiki/Full_node) and avoids leaks to a third-party server.

## Freelancers & Bill Pay

Freelancers can request for payment by sharing a [Payment Request](./PaymentRequests.md).
Content and appearance of the payment request is customizable.
With or without expiry, customers can pay the request at any time.
BTCPay Server automatically updates the exchange rate when the customer pays the payment request when it’s convenient for them.
Merchants or freelancers can use payment requests for bill pay services.
Payment requests can even be used to quickly request money from friends.

Merchants can provide payment by sharing a [Pull Payment](./PullPayments.md). This is a long lived payment offer that the freelancer can pull funds from at their convenience. The merchant can specify the total amount and approve partial or a full request for payment.

## Lightning Network payments

BTCPay Server offers a very easy way to get started with receiving or sending payments on the Lightning Network.
You can use and experiment with this innovative second-layer solution build on top of Bitcoin by [following this guide](./LightningNetwork.md).
Both merchants and customers can use BTCPay to receive or make payments off-chain with instant confirmations and reduced network fees.

## Charities and Content Creators (Donations)

Charities, non-profits, content creators, and other organizations that want to accept cryptocurrency donations in a more private way than the traditional single bitcoin address method can utilize the [Pay Button](./WhatsNext.md#creating-the-pay-button), [POS app](./WhatsNext.md#creating-the-point-of-sale-app), and [Crowdfunding app](./Apps.md#crowdfunding-app) for a better user experience.

Benefits of using BTCPay for accepting donations:


	Saving money (no fees, no subscriptions)


	Cutting out the middle-man (Payments go directly to their wallet)


	Enhancing privacy for them and their donors (no address re-use, no IP leaks to third parties)




It is particularly important to mention that BTCPay Sever prevents address reuse, as many people have been reusing addresses for donations in the past. Here is why you SHOULD NOT reuse a Bitcoin address:


	Privacy: reusing the same address for donations not only makes it incredibly easy to link it to your identity, it also compromises the privacy of your donors and every person that interacts with you


	Security: by compromising your privacy, address reuse increases your attack surface, as people that want to steal from you or harm you would have A LOT of information about you and your donors


	High fees: fees for a Bitcoin transaction are calculated according to the “size” of a transaction (which has nothing to do with the amount being sent). By reusing addresses, you are building huge transactions involving many inputs, that will cost you a lot in fees when you want to move them




You can read more about address reuse on the [Bitcoin Wiki](https://en.bitcoin.it/wiki/Address_reuse).

## Local Payment Processor

Admin running a BTCPay Server instance, can enable registration for other users and become a [third-party payment processor](/Deployment/ThirdPartyHosting.md) for family members, friends or their local community.

This means that admin allows other people to register and use their instance, while the payments remain non-custodial.

Take a look at the list of [third-party hosts](/Deployment/ThirdPartyHosting.md).

## Cryptocurrency Exchanges

The [number of merchants](https://directory.btcpayserver.org) using BTCPay Server grows each day, and cryptocurrency exchanges could benefit from it by developing integration with BTCPay and allow instant conversion of cryptocurrency payments into local fiat currencies.

Being an open-sourced project, BTCPay Server doesn’t have the power to impose anything on exchanges, meaning that any of them could build on top of it, regardless of their size or the country they operate.

## Hosting Providers

Hosting providers can (and some already did) create easy 1-click BTCPay deployment solutions for their customers. With the growing interest in BTCPay Server, hosting companies can tap into this source of new customers and make money by hosting easily-deployable BTCPay instances for merchants.

## Developers

BTCPay Server community is amiable and open-minded. Developers can not only learn a lot and get their name out by working on an open-source project, but also participate in transforming the payment processing business.

—

These are some of the many ways in which you can use BTCPay. Unleash your creativity and feel free to build your own solutions to solve problems.



            

          

      

      

    

  

    
      
          
            
  # BTCPay Server Walkthrough

In this article, we will walk you through the BTCPay user interface and show you how to navigate through different options.

Watch video below for an interactive overview of the features.

[![BTCPay Server Walkthrough](https://img.youtube.com/vi/ZIfJyq9RimM/mqdefault.jpg)](https://www.youtube.com/watch?v=ZIfJyq9RimM “BTCPay Server - WalkThrough”)

After you created the account on the BTCPay Server instance hosted by yourself or a third-party, you’ll see a variety of options in the navigation menu on top.

![BTCPay Server Navigation](./img/BTCPay-Navigation.jpg “BTCPay Server Navigation”)


	Server settings


	Stores


	Apps


	Wallets


	Invoices


	Payment requests


	My settings


	Notifications




## Server settings

Server settings is something only a server admin can access. If you’re using someone else’s server, you won’t see Server Settings. Inside the settings, you can perform tasks such as controlling users, rates, updating the server, etc. For more information, check [Server Settings FAQ](./FAQ/ServerSettings.md)


	Users - Add, remove or manage users of your BTCPay Server.


	Email server - If you want users to verify e-mail address when registering set up the SMTP settings.


	Policies - Enable or disable user registration, e-mail verification, search engine indexing, display apps on website root.


	Services - gRPC, REST and RTL used for connecting your LN node, SSH keys and uploaded file storage setup.


	Theme - Customize the front-end appearance of your BTCPay Server.


	Maintenance - Update your BTCPay to latest version and clean your BTCPay by deleting unused docker images.


	Logs - Displays most recent logs of the BTCPay Server.


	Files - After enabling this feature in Services, upload external files and access them via url.




## Stores

Inside BTCPay you can create and manage an unlimited number of stores. Each store has its own wallet, can create apps (Point of Sale or Payment Buttons and Crowdfunds) or be paired with external e-commerce software through one of the integrations available. Admin does not have control over the private keys of the other user’s stores. For more information, check [Stores FAQ](./FAQ/Stores.md)


	General settings - Configure individual store settings, set up derivation scheme for your wallet and adjust the number of confirmations or invoice expiration time, etc. Server admins can enable Lightning Network payments.


	Rates - Set the source for cryptocurrency to fiat [exchange rates for your store](./FAQ/Stores.md#how-to-change-the-exchange-rate-provider-for-invoices).


	Checkout experience - [Customize the appearance](./FAQ/ServerSettings.md#how-to-modify-the-checkout-page) of the checkout page, choose default coin, etc.


	Access Tokens - Tokens for [pairing the store to an integration](./WhatsNext.md#connecting-your-btcpay-store-to-your-e-commerce-platform)


	Users - Enable other users with a registered BTCPay account to access your store as either guest or owner.


	Pay Button - [Create a payment button](./WhatsNext.md#creating-the-pay-button) you can easily embed into your website.




## Apps

Each store has access to different apps. Applications built on top of BTCPay extend the [use case](./UseCase.md) of the software and cater to different type of users. Here you can create a new app and connect it to the store and customize it. A good example is the Point of Sale app which you can use to receive payments in physical stores or even donations.

For more information, check [Apps](./Apps.md) or [Apps FAQ](./FAQ/Apps.md)

## Wallets

Each store gets an internal wallet upon adding a derivation scheme. Internal BTCPay wallet shows all of your payments and should be used as a reference if some payments are not shown in your software or hardware wallet due to some wallets [not supporting larger gap limit](./FAQ/Wallet.md#missing-payments-in-my-software-or-hardware-wallet). In Wallets, you can see the total balance of your store. The funds from the wallet can only be spent, if the user signs a transaction with a compatible hardware wallet.

Three elements of the internal BTCPay Wallet are:
* Transaction - Shows your entire transaction history.
* Send - Used for sending funds out of your wallet (has to be signed and confirmed on a compatible hardware wallet).
* Receive - Used to manually generate a new address.
* Rescan - Enables you to import old wallets into BTCPay more easily and solves the gap limit issue most external wallets have.
* Pull Payments - Used to create and manage Pull Payments. For more information on this feature, check [Pull Payments](PullPayments.md).
* Payouts - Used to manage Pull Payment requests.
* PSBT - Used to sign multi-signature transactions through the PSBT standard.
* Settings - Used to view and adjust additional settings for your wallet.

For more information, check [Wallet](./Wallet.md) or [Wallet FAQ](./FAQ/Wallet.md)

## Invoices

All of the invoices for your user account will be displayed here. You can filter the invoices by the status, order, item, store or date. You can also create invoices manually. Invoices are sorted by date from new to old. You can open an individual invoice for more information. Use the export button to save a file (.json or .csv) detailing all invoices.

## Payment Requests

Each store can have an unlimited number of payment requests which are displayed here. Payment requests are dynamic invoices that can be shared by url and paid at any time using current BTC exchange rates. Here you can edit and view your payment requests. You can see invoice details for your payment requests and even clone previously created payment requests.

For more information, check [Payment Requests](PaymentRequests.md)

## My Settings

My Settings are user settings. Modify your e-mail address, password or set up two-factor authentication. The U2F feature allows users to further enhance the security of their accounts by physically confirming authentication with a U2F compatible device.

## Notifications

Notifications inform the user that an event has occurred on the BTCPay Server instance.
The event that is notified can for example be a received or failed payment, an overpaid or underpaid invoice.

By clicking on the icon you can access the Notifications page, where you can view past Notifications and optionally delete them.
Learn more about all BTCPay notifications [here](./Notifications.md).



            

          

      

      

    

  

    
      
          
            
  # BTCPay Server Wallet

BTCPay Server has a built in, full-node reliant wallet that allows for easy funds management.

Each [store](./CreateStore.md)’s configured cryptocurrency has a separate wallet displayed on the wallets page. A wallet can be accessed by clicking Wallets from the top menu. To access a particular wallet, click Manage.

![Wallets Page BTCPay](./img/wallet/Wallets.png)

## Wallet features

The wallet contains the following features:


	Transactions


	Send


	Receive


	Rescan


	Pull payments


	Payouts


	PSBT


	Settings




### Transactions

An overview of the incoming (green), outgoing (red) and unconfirmed (grayed out) transactions displayed together with timestamps and balances, sorted by date. You can click on the transaction ID to view the transaction details on the block explorer.

![Individual Wallet](./img/wallet/WalletTransactions.png “BTCPay Server Wallet Transactions”)

#### Transaction Labels

The table below lists the various transaction labels used by BTCPay.


Transaction Type  | Description                                                  |

—————– | ———————————————————— |

app               | Payment was received through an app created invoice          |

invoice           | Payment was received through an invoice                      |

payjoin           | Not paid, invoice timer still has not expired                |

payjoin-exposed   | UTXO was exposed through an invoice payjoin proposal         |

payment-request   | Payment was received through a payment request               |

payout            | Payment was sent through a payout or refund                  |



You can also create your own [custom transaction labels and comments](./FAQ/Wallet.md#how-to-add-custom-labels-and-comments-to-transactions).

### Send

The Send function allows spending of the funds from the BTCPay wallet.

![Send from the Wallet](./img/wallet/WalletSend.png)

#### Signing a transaction (spending)

To spend the funds, you are required to sign the transaction. Transactions can be signed with:


	Hardware Wallet


	Wallet supporting PSBT


	HD private key or recovery seed


	Hot Wallet




##### Signing with HD Private Key or mnemonic seed

If you set up an [existing wallet with your BTCPay Server](./WalletSetup.md#use-an-existing-wallet), you can spend the funds by inputting your private key into an appropriate field. Make sure to set a proper AccountKeyPath in Wallet > Settings otherwise you won’t be able to spend.

##### Signing with a wallet supporting PSBT

PSBT (Partially Signed Bitcoin transactions) is an interchange format for Bitcoin transactions that are not fully signed yet.
PSBT is supported in BTCPay Server and can be signed with compatible hardware and software wallets.

The construction of a fully signed Bitcoin transaction goes through the following steps:


	A PSBT gets constructed with certain inputs and outputs, but no signatures


	The exported PSBT can be imported by a wallet that supports this format


	The transaction data can be inspected and signed using the wallet


	The signed PSBT file gets exported from the wallet and imported with BTCPay Server


	BTCPay Server produces the final Bitcoin transaction


	You verify the result and broadcast it to the network




Check this tutorial on how to [sign a PSBT transaction with ColdCard Hardware Wallet](./ColdCardWallet.md#spending-from-btcpay-server-wallet-with-coldcard-psbt), completely offline/air-gapped.

##### Signing with a hardware wallet

BTCPay Server has built-in hardware wallet support allowing you to use your hardware wallet with BTCPay, without leaking information to third-party apps or servers.

[Check instructions](HardwareWalletIntegration.md) on how to set up and sign with a [compatible hardware wallet](https://github.com/bitcoin-core/HWI#device-support).

##### Signing with a hot wallet

If you [created a new wallet](./CreateWallet.md) when setting up your store and enabled it as a [hot wallet](./CreateWallet.md#hot-wallet), you can sign a transaction with a private key stored on your server.

:::danger
Using the hot wallet feature comes with its own security implications, please be sure to read and understand them over at the [Hot Wallet documentation](./CreateWallet.md#hot-wallet)
::

#### Advanced Settings





Certain wallet features are available for advanced users. Toggle the Advanced Settings within the Send tab to preview them.

##### Don’t create UTXO change

This option is available in the Advanced mode of the Send page.

It is a privacy enhancing feature which is useful when you’re sending funds to another wallet of yours or to an exchange. It makes sure that no change UTXO is created by rounding up the amount sent.

By default this feature is disabled, so if your wallet has a UTXO of 1.1 BTC and you input an amount equal to 1.0 BTC, the resulting transaction will have two outputs 0.1 BTC of change, and 1.0 BTC to your destination.

Blockchain analysis will understand that those 0.1 BTC of change belong to the same entity which controlled 1.1 BTC before, and can track the future purchase you make under the same pattern.

By enabling this feature, BTCPay Server wallet will round up the amount sent to 1.1 BTC such that no change output is sent back to you.

Warning: Despite the fact, in this example, that you entered 1.0 in the amount field, the amount that will really be sent to your destination will be 1.1 BTC.

##### RBF (Replace-By-Fee)

Replace-By-Fee (RBF) is a Bitcoin protocol feature that allows you to replace a previously broadcast transaction (while unconfirmed). This allows randomizing your wallet’s transaction fingerprint, or simply for replacing it with a higher fee rate to move the transaction higher in the queue of confirmation (mining) priority. This will effectively replace the original transaction as the higher fee rate will be prioritized and once confirmed, invalidating the original one (double spend).

Press the Advanced Settings button to view the RBF options:

![RBF Options](./img/wallet/WalletRBF.png)


	Option 1 (Enabled by Default): Allow the transaction to be replaced automatically for randomization of transaction fingerprint (increased privacy)


	Option 2: Yes, Allow the transaction to be replaced explicitly (not replaced by default)


	Option 3: No, Do not allow the transaction to be replaced (ignore replacement)




##### Coin Selection

Coin selection is an advanced privacy-enhancing feature that allows you to specifically select coins that you would like to spend when crafting a transaction. For example, paying with coins that are fresh from a coinjoin mix.

To make the selection easier, coin-selection works natively with the wallet labels feature. This allows you to label any incoming funds for smoother UTXO management and spending.

![Coin Selection](./img/wallet/CoinSelection.png “Coin Selection”)

##### Other features

###### Camera QR scan

Scan option in wallet (camera icon in send screen) lets you use your device’s camera to scan a QR code containing an address or BIP21 payment link. It auto-populates the sending information so that you don’t have to manually copy-paste an address and amount.

![QR Scan](./img/wallet/ScanWallet.png)

###### Paste BIP21 address

This option decodes a BIP21 payment link. It’s useful when you’re trying to pay a [Payjoin](./Payjoin.md) invoice.

### Receive

The Receive tab generates an unused address which can be used to receive payments. The same can be achieved by generating an invoice (Invoices > Create new invoice).

![Wallet Receive](./img/wallet/WalletReceive.png “Receive in BTCPay”)

### Pull Payments

This feature gives you the ability to create a Pull Payment, so that an outside individual may request to pull funds from your wallet.

For more information, see [Pull Payments](./PullPayments.md).

### Payouts

This section lets you manage Pull Payments and gives you the ability to accept or decline payouts requested by outside individuals.

For more information, see [Payouts](./PullPayments.md#approve-and-pay-a-payout).

### Re-scan

The Rescan relies on Bitcoin Core 0.17.0’s scantxoutset to scan the current state of the blockchain (called UTXO Set) for coins belonging to the configured derivation scheme.

![Wallet Rescan](./img/wallet/WalletRescan.png “Rescan Wallet in BTCPay”)

Wallet re-scan solves two critical problems for BTCPay users:


	[Gap limit](./FAQ/Wallet.md#missing-payments-in-my-software-or-hardware-wallet)


	Importing a previously used wallet




Gap limit: Most wallets typically have the address gap limit set to 20. This means that if a merchant receives 21 or more consecutive unpaid invoices, those wallets show the incorrect balance and some transactions may not be visible.

Wallet import: When users add a derivation scheme of a wallet that had transactions in the past (previously used wallet), BTCPay won’t be able to show the balance and transactions from the past.

![Wallet rescan progress](./img/wallet/WalletRescanProgress.png “Rescan Wallet in BTCPay”)

Re-scan is a feature that solves both of these problems. Once the scan is complete, BTCPay Server will show the correct balance, along with the past transactions of the wallet.

Wallet re-scan requires access to the full node which means that this function is only available for server owners.

Users who use a third-party host should use a newly generated xpub key and also use an external wallet like Electrum which allows them to increase the gap limit.

### PSBT

In the Partially Signed Bitcoin Transactions (PSBT) tab, you can upload and decode any PSBT. For example, a signed PSBT from your external wallet can be broadcast via BTCPay Wallet. See [more information on PSBT](./ColdCardWallet.md#spending-from-btcpay-server-wallet-with-coldcard-psbt).

### Settings

In the wallet settings tab you can adjust certain settings. If you’ve configured your wallet by [creating a new wallet](./CreateWallet.md) or using an existing wallet via the [hardware wallet integration](./HardwareWalletIntegration.md) these settings will be pre-configured.

If you manually added the extended public key from an external wallet, you’d need to adjust AccountKeyPath that you can find in your external wallet, for example m/84’/0’/0’ to be able to spend from the BTCPay Wallet.



            

          

      

      

    

  

    
      
          
            
  # (3) Wallet Setup

After [account registration](./RegisterAccount.md) and [store creation](./CreateStore.md), it’s time to configure a wallet in your BTCPay Server, so that you can start receiving payments into it.

There are two ways to set up a wallet in BTCPay Server:



	[Connect an existing wallet](./ConnectWallet.md)


	[Create a new wallet](./CreateWallet.md)







There are many options on how set up a wallet with your BTCPay Server. It’s up to you to decide what works best for your use-case. Once you configure a wallet, you’re all set. The next step, is to [start exploring the features](./WhatsNext.md).

*Proceed to the next step - [What’s Next?](./WhatsNext.md).*



            

          

      

      

    

  

    
      
          
            
  # Connecting Wasabi Wallet to BTCPay Server

This documents shows how to connect [Wasabi Wallet](https://wasabiwallet.io/) to BTCPay Server.


	Create a Store in BTCPay Server


	[Download Wasabi Wallet](https://wasabiwallet.io/#download)


	[Install Wasabi Wallet](https://docs.wasabiwallet.io/using-wasabi/InstallPackage.html)




## Wasabi Wallet Setup

After installation, open the Wasabi Wallet by clicking on the icon on your desktop.

## Quick Setup


	Generate Wasabi Wallet


	In Wasabi, Advanced Settings > Wallet info - copy the Extended Public Key.


	In BTCPay Server, Store > Settings > Wallet > Setup > Connect an existing wallet > Enter extended public key


	In Receive tab in Wasabi, generate a new address.


	Confirm that the addresses in Wasabi and BTCPay Server match.




## Step by Step

![Connect Wasabi Wallet to BTCPay Server](./img/Wasabi/WasabiWalletSetupBTCPay1.png “Connect Wasabi Wallet to BTCPay Server”)

Firstly, give your wallet a name, for example, BTCPay Server Wallet and enter a secure password. Make sure to write down the password. Agree to Terms of Service, and click Generate in the right corner.

![Connect Wasabi Wallet to BTCPay Server](./img/Wasabi/WasabiWalletSetupBTCPay2.png “Connect Wasabi Wallet to BTCPay Server”)

IMPORTANT NOTE: Write down your recovery words in the order you see them on the screen. Write them down a piece of paper and store it somewhere secure. Take your time and triple check each word. Do not store your seed in a digital format (photograph, text document). Whoever has the access to your seed and your password can access your funds. Confirm that the seed has been properly backed up.

![Connect Wasabi Wallet to BTCPay Server](./img/Wasabi/WasabiWalletSetupBTCPay3.png “Connect Wasabi Wallet to BTCPay Server”)

Before proceeding, it is required to test the password, to be sure that the wallet can be accessed without any problems.

To test the password, enter it in the password field, and click Test Password.

![Connect Wasabi Wallet to BTCPay Server](./img/Wasabi/WasabiWalletSetupBTCPay4.png “Connect Wasabi Wallet to BTCPay Server”)

The green message on the left bottom side of the screen will appear if the password is correct.  If by any chance your password is incorrect, delete the wallet and start from scratch.

![Connect Wasabi Wallet to BTCPay Server](./img/Wasabi/WasabiWalletSetupBTCPay5.png “Connect Wasabi Wallet to BTCPay Server”)

Upon testing the password, click on the Load Wallet to access your newly created wallet.

![Connect Wasabi Wallet to BTCPay Server](./img/Wasabi/WasabiWalletSetupBTCPay6.png “Connect Wasabi Wallet to BTCPay Server”)

When the wallet loads (it may take few moments), on the right hand wallet explorer, toggle the Advanced options and then click Wallet Info.

Select and copy the Extended Account Public Key. This is the public key from which BTCPay will derive addresses. This cannot be used to derive private keys and spend the bitcoin.

![Connect Wasabi Wallet to BTCPay Server](./img/Wasabi/WasabiWalletSetupBTCPay8.png “Connect Wasabi Wallet to BTCPay Server”)


	Return to your BTCPay Server. Click on the Stores in the header menu


	Click Settings > Setup > Connect an existing wallet > Enter extended public key




Return to your BTCPay Server. Click on the Stores in the header menu and look for the Wallet section. Click on the Setup button.

![Connect Wasabi Wallet to BTCPay Server](./img/createwallet/SetupWallet.png “Connect Wasabi Wallet to BTCPay Server”)

Paste the Extended Account Public Key into derivation scheme field as it is, without adding anything else. Make sure that Enabled checkbox is ticked and click Continue.

![Connect Wasabi Wallet to BTCPay Server](./img/createwallet/SetupWalletXpub.png “Connect Wasabi Wallet to BTCPay Server”)

Return to the Wasabi  Wallet. Go to Receive tab and generate a new address.

![Connect Wasabi Wallet to BTCPay Server](./img/Wasabi/WasabiWalletSetupBTCPay12.png “Connect Wasabi Wallet to BTCPay Server”)

Compare the address you see in Wasabi Wallet to addresses shown in BTCPay Server. If there’s a match, continue. If there is no match, copy the address from Wasabi and paste it into Hint Address Form. If you still can’t get the matching, double-check that you’re actually pasting Extended Account Public Key.

![Connect Wasabi Wallet to BTCPay Server](./img/Wasabi/WasabiWalletSetupBTCPay13.png “Connect Wasabi Wallet to BTCPay Server”)

### Connecting Wasabi to BTCPay Server Full Node (If you’re self-hosting BTCPay)

After wallets are connected, it is highly-recommended to connect Wasabi Wallet to your full node in BTCPay. The process is easy, but can only be done if you self-host BTCPay and are logged in as Admin. Tor has to be enabled in BTCPay (it is enabled by default). This process enhances privacy even further.

In BTCPay, go Server Settings > Services > Full node P2P > See Information.
On the BTCP-P2P page, click on the Show Confidential QR Code. Bellow the QR Code, there’s a link See QR Code information by clicking here, so click on the link to reveal your string. Copy the string but remove bitcoin-p2p:// part.

In Alternative Block Source / Bitcoin P2P Endpoint, paste the endpoint.

Restart Wasabi.

### Configuring the Gap Limit in Wasabi

In the top menu, select click on the File > Open > Wallets Folder. Shortly the json file will be shown in a sub-folder. Open that file with a text editor like notepad.
Locate “MinGapLimit”: 21, change it to “MinGapLimit”: 100, and save the file.

There’s no good answer to how much you should set the gap limit to. Most merchants set 100-200. If you’re a big merchant with high transaction volume, you can try with even higher gap limit.

For more details about the [Gap Limit, check the FAQ](./FAQ/Wallet.md#missing-payments-in-my-software-or-hardware-wallet).

Wasabi Wallet and BTCPay Server are now connected. Any payments received to your BTCPay will be visible in Wasabi, where you can further spend or mix them.



            

          

      

      

    

  

    
      
          
            
  # (4) What’s Next?

After you’ve connected your wallet to your BTCPay, you can explore various built in tools in the software. See the full list of Use Cases [here](./UseCase.md).

## Creating the Point of Sale App

BTCPay has a PoS app which you can use to receive payments from your customers directly or to receive donations. To create the POS app, you need to have a store created in BTCPay. View PoS instructions [here](./Apps.md#point-of-sale-app).

## Creating the Crowdfund App

Create a crowdfunding campaign using BTCPay. Unlike traditional crowdfunding platforms, the creator of the campaign is the owner of the platform. Funds go directly to the creator’s wallet without any fees. View Crowdfund instructions [here](./Apps.md#crowdfunding-app).

## Creating the Payment Request

Create custom invoices which can be shared with others, by sending a link to your payment request. Users can pay the request at any time. BTCPay automatically updates the BTC exchange rate at the time of payment. View Payment Request instructions [here](./PaymentRequests.md).

## Creating the Pay Button

Pay buttons are great when you have a fixed amount for a product or a donation. You can easily embed the button into HTML. When the customer or a visitor clicks on the button, BTCPay displays a checkout page and an invoice for them. View Pay Button instructions [here](./Apps.md#payment-button).

## Connecting your BTCPay store to your e-commerce platform

Depending on the CMS you’re using, you can easily connect BTCPay to your online store. Currently, BTCPay offers following integrations :


	[WooCommerce](./WooCommerce.md)


	[Shopify](./Shopify.md)


	[Drupal](./Drupal.md)


	[Magneto](./Magento.md)


	[PrestaShop](./PrestaShop.md)


	[Custom integration](./CustomIntegration.md)




## Connecting Additional BTCPay Services

Additional free, open-source plugins can be used with your BTCPay.


	[LibrePatron](https://github.com/JeffVandrewJr/patron)


	[BTC Transmuter](https://github.com/btcpayserver/btcTransmuter/blob/master/README.md)




LibrePatron is a self-hosted, censorship-free, Patreon alternative. LibrePatron uses BTCPay Server to receive Bitcoin payments on a recurring basis. Funds go directly to the creator’s wallet. View LibrePatron instructions [here](https://blog.btcpayserver.org/librepatron-patreon-alternative/).

BTC Transmuter is a self-hosted service that allows you to automate your money and other tasks using BTCPay. Create custom, automated processes using crypto service triggers based on BTCPay. Common use-cases are fiat integration, payment forwarding and email automation. Open lightning channels, detect payments and more, using blockchain data from your own nodes in BTCPay. View BTC Transmuter documentation [here](https://github.com/btcpayserver/btcTransmuter/blob/master/README.md).

## Join The BTCPay Community
BTCPay Server is an open-source project, not a company. We rely on a network of diverse contributors and users to provide support for numerous use-cases. Join us in improving, learning, and building BTCPay.

If you have questions, try searching our [FAQ Section](./FAQ/readme.md) or join the [BTCPay Community](./Community.md) and share questions and ideas for improvement.

If you are a developer take a look at the [Local Development](../Development/LocalDevelopment.md) guide and help us with any [open issues](https://github.com/btcpayserver/btcpayserver/issues) on Github. If you would like to contribute to BTCPay in other ways, check out the [Contribution Guide](./Contribute.md) for ideas.



            

          

      

      

    

  

    
      
          
            
  —
description: How to integrate BTCPay Server into your WooCommerce store.
tags:
- WooCommerce
- WordPress
- Plugin
- eCommerce
—
# WooCommerce integration

This document explains how to integrate BTCPay Server into your WooCommerce store.
If you do not have a store yet, follow [this step by step article](https://bitcoinshirt.co/how-to-create-store-accept-bitcoin/) to create one from scratch.

You can check out the following video, or head over to [the WooCommerce plugin repository](https://github.com/btcpayserver/woocommerce-plugin).

[![BTCPay - WooCommerce](https://img.youtube.com/vi/tTH3nLoyTcw/mqdefault.jpg)](https://www.youtube.com/watch?v=tTH3nLoyTcw “BTCPay - WooCommerce”)

![BTCPay - WooCommerce Infographic](./img/infographics/BTCPayInfographic.png “BTCPay - WooCommerce Infographic”)

To integrate BTCPay Server into an existing WooCommerce store, follow the steps below.

## 1. Install BTCPay Plugin

There are two ways to download BTCPay plugin:


	[WordPress Repository](https://wordpress.org/plugins/btcpay-for-woocommerce/)


	[GitHub Repository](https://github.com/btcpayserver/woocommerce-plugin/releases)




### Install plugin from WordPress


	WordPress > Plugins > Add New.


	In Search, type “BTCPay for WooCommerce”


	Install and activate.




![BTCPay WordPress Repo plugin installation](./img/BTCPay-WooCommerce-WP-Repo-Install.png)

### Download and install plugin from GitHub

[Download the latest BTCPay plugin](https://github.com/btcpayserver/woocommerce-plugin/releases), upload it in .zip format into your WordPress and activate it.

[![BTCPay Server Woo Plugin](https://img.youtube.com/vi/6QcTWHRKZag/mqdefault.jpg)](https://www.youtube.com/watch?v=6QcTWHRKZag “BTCPay Server - Woo Plugin”)

## 2. Deploy BTCPay Server

To launch your BTCPay server, you can self-host it, or use a third party host.

### 2.1 Self-hosted BTCPay

There are various ways to [launch a self-hosted BTCPay](/Deployment/README.md).
If you do not have technical knowledge, use the [web-wizard method](https://launchbtcpay.lunanode.com) and follow the video below.

[![BTCPay Server Lundanode](https://img.youtube.com/vi/NjslXYvp8bk/mqdefault.jpg)](https://www.youtube.com/watch?v=NjslXYvp8bk “BTCPay Server - LunaNode”)

For the self-hosted solutions, you’ll have to wait for your node to sync fully before proceeding to step 3.

### 2.2 Third-party host

For those who want to test BTCPay out, or are okay with the limitations of a third-party hosting (dependency and privacy, as well as lack of some features) can use a one of many [third-party hosts](/Deployment/ThirdPartyHosting.md).

The video below shows you how to connect your store to such a host.

[![BTCPay Server Third Party Host](https://img.youtube.com/vi/IT2K8It3S3o/mqdefault.jpg)](https://www.youtube.com/watch?v=IT2K8It3S3o “BTCPay Server - Third Party Host”)

## 3. Pairing the store

BTCPay WooCommerce plugin is a bridge between your server (payment processor) and your e-commerce store.
No matter if you’re using a self-hosted or third-party solution from step 2, the pairing process is identical.

Go to your store dashboard.
WooCommerce > Settings > Payments.
Click BTCPay.


	In the field, enter the full URL of your host (including the https) – https://btcpay.mydomain.com


	Click on the generated link which will redirect you back to your BTCPay Server.


	Click on request pairing


	Approve the pairing


	Copy the pairing code


	Go back to your store and paste the pairing code


	Click “Pair”


	When you see the image, it means you successfully paired your server and your store.




The process of pairing a store with BTCPay is explained in a video below, starting at 1:59

[![Store Pairing](https://img.youtube.com/vi/IT2K8It3S3o/mqdefault.jpg)](https://youtube.com/watch?v=IT2K8It3S3o?t=119 “BTCPay Server - Pairing your Store”)

## 4. Connecting your wallet

No matter if you’re using self-hosted or server hosted by a third-party, the process of configuring your wallet is the same.

[![BTCPay Server Wallet](https://img.youtube.com/vi/xX6LyQej0NQ/mqdefault.jpg)](https://www.youtube.com/watch?v=xX6LyQej0NQ “BTCPay Server - Wallet”)

## 5. Testing the checkout

Making a small test-purchase from your store will give you a piece of mind.
Always make sure that everything is set up correctly before going live.
The final video guides you through the steps of setting a gap limit in your Electrum wallet and testing the checkout process.

[![BTCPay Server Checkout](https://img.youtube.com/vi/Fi3pYpzGmmo/mqdefault.jpg)](https://www.youtube.com/watch?v=Fi3pYpzGmmo “BTCPay Server - Wallet”)

## 6. Customizing BTCPay WooCommerce Plugin

### BTCPay Order Statuses

Depending on your business model and store settings, you may want to configure your order statuses.
You can set BTCPay to trigger certain order status in WooCommerce automatically.


	New Order - order placed, not paid yet.


	Paid - order paid, not confirmed on the blockchain.


	Confirmed - order paid, confirmed on the blockchain, does not have a sufficient number of confirmations set in BTCPay tore settings.


	Complete - order paid, confirmed on the blockchain with a sufficient number of confirmations.


	Invalid - order paid, did not get a sufficient number of confirmations in a pre-defined time-frame set in BTCPay store settings.


	Expired - invoice expired, order not paid


	Paid after expiration - invoice expired, paid


	Expired with partial payment - invoice expired and paid partially




Take time to think about how you wish to automate these statuses.
If you do not wish certain BTCPay status to trigger WooCommerce order status, you can leave it blank.

For example, if a merchant wants to send an email notifying the customer that the payment has been received, but the order will be processed upon confirmation, the merchant would have to set “order status paid” to “on hold.”
Then, the merchant would have to customize and trigger email for ‘on hold’ status of the order in WooCommerce.
It takes some time to find a perfect formula, so users should test things out before going live.

# Deploying WooCommerce from BTCPay Server

If you already have BTCPay Server, you can very easily start WooCommerce from your existing environment.


	Point the external IP of the virtual machine where your BTCPay is hosted to your store domain, for example store.yourdomain.com.


	Log into your BTCPay server as root.




`bash
sudo su -
`


	Set up WooCommerce variables. You can add [optional variables](https://github.com/btcpayserver/btcpayserver-docker/blob/master/docker-compose-generator/docker-fragments/opt-add-woocommerce.yml) as well.




`bash
export BTCPAYGEN_ADDITIONAL_FRAGMENTS="$BTCPAYGEN_ADDITIONAL_FRAGMENTS;opt-add-woocommerce"
export WOOCOMMERCE_HOST="yourstoredomain.com"
`


	Lastly, just run BTCPay Setup script which will add the set up variables.




`bash
. ./btcpay-setup.sh -i
`


	Go to your store’s domain name, in our example that’s store.yourdomain.com and follow the WordPress installation wizard.






            

          

      

      

    

  

    
      
          
            
  # Design BTCPay Server

## Why designing matters

Designing for BTCPay Server consists of improving overall experience for the end-user, making it easier to navigate the menus, options, etc…

To contribute design to BTCPay Server, check out the [UX/UI channel](https://chat.btcpayserver.org/btcpayserver/channels/ux-ui) for current discussions and the Figma [getting started](https://www.figma.com/file/C7Xyq0FlxgFW8vaBr8ht1z/BTCPAY?node-id=1766%3A1005) section for the design projects that are currently being worked on.

Graphic content also helps promote BTCPay Server. Be it full scale logos, memes or other graphics, we’re always enjoying seeing what contributors come up with.
Following the [Codified Design Guidelines](https://design.btcpayserver.org/) is required so that graphical content can be consistent between contributors.



            

          

      

      

    

  

    
      
          
            
  # Coding BTCPay Server

[[toc]]

## Why coding matters

By helping the project grow, become more mature, advanced and elaborate, coders working on BTCPay Server are a central component of the project.

If you have coding skills, be it writing or reviewing code, you can contribute to BTCPay Server.

## Where to start

If you’re a developer looking to help, but you’re not sure where to begin, check the [good first issue label](https://github.com/btcpayserver/btcpayserver/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22), which contains small pieces of work that have been specifically flagged as being friendly to new contributors.

Contributors looking to do something a bit more challenging, before opening a pull request, please [create an issue](https://github.com/btcpayserver/btcpayserver/issues/new/choose) or join [our community chat](https://chat.btcpayserver.org/) to get early feedback, discuss best ways to tackle the problem and to ensure there is no work duplication.

We are actively looking for developers who can take on and resolve GitHub issues and help with development. If you would like to help us, but need some guidance, the [#dev channel on Mattermost](https://chat.btcpayserver.org/btcpayserver/channels/dev) is the place to ask questions.

### Setup Developer Environment

If you are interested in getting started as a developer or tester of the software behind BTCPay Server, check out the [Setup Developer Environment](./DevCode.md) guide that will walk you step by step through every software used in development with BTCPay such as Git, GitBash, Github, Docker, Visual Studio, Postgres, etc. If you have never coded before and you are looking to learn something new, start here.

### Local BTCPay Development

If you already have a developer environment setup you can start with the BTCPay specific [Local Development](/Development/LocalDevelopment.md) documentation.

### Local BTCPay Testing

Once you have your development environment tools setup and your local BTCPay Server running, view the [Local Testing](./DevTest.md) guide. This shows you how to use BTCPay in regtest mode for use in development and for users who want to test new features before they are released.

## Requirements

Software requirements (ie. IDE) can also be found in [local development](/Development/LocalDevelopment.md#which-ide).

## Videos

BTCPay Server development videos can be found [here](/Development/LocalDevelopment.md#videos) or on the [BTCPayServer YouTube](https://www.youtube.com/channel/UCpG9WL6TJuoNfFVkaDMp9ug) channel.



            

          

      

      

    

  

    
      
          
            
  # Setup Developer Environment

[[toc]]

This guide will help you set up your developer environment to prepare you for later contributions to the BTCPay Server repositories. A variety of beginner tools are used in the guide below to help you get started with development. Once you understand the general setup process, feel free to use any tools that you like.

If you are looking for how to make a simple code change such as fixing a typo or copy change, check out the simplified [Write Software](./WriteSoftware.md) tutorial instead. If you are an advanced developer with a local environment already set up for development, you can skip ahead to the [LocalDevelopment](/Development/LocalDevelopment.md) documentation.

## Developer Resources


	[Github Guides](https://guides.github.com/)


	[BTCPay Commands and Concepts](/Development/LocalDevelopment.md)


	[Environment Setup Videos (Linux, Mac, Windows)](/Development/LocalDevelopment.md#videos)




## Windows Setup Software


Software to install to follow this guide:

1. [Visual Studio Community Edition](https://visualstudio.microsoft.com/downloads/)
1. [.NET Core SDK 3.1+](https://dotnet.microsoft.com/download)
1. [Docker Desktop](https://www.docker.com/products/docker-desktop)
1. PowerShell (included in Windows OS)
1. [GitBash](https://gitforwindows.org/)
1. [GitHub Desktop](https://desktop.github.com/)
1. [www.Github.com account](https://github.com/) (sign up)




Note: _This guide assumes installations in default locations. Take note if you have a different file directory structure._

## Git Setup

### Fork BTCPay Server Repository


	Open a web browser and login to your www.Github.com account.


	Navigate to the [BTCPay Server Repository](https://github.com/btcpayserver/btcpayserver) and press the Fork button to create your own copy of the BTCPay Server repository on Github.


	Next open Github Desktop and login so that Github Desktop knows about your www.Github.com account and connects to it.




### Clone BTCPay Server Repository


	In GitHub Desktop, use the Add button and see the option clone repository.


	If you are using your www.Github.com credentials in GitHub Desktop, you will see your BTCPay Server repository that you just forked on www.Github.com. Select it and take note of the local path shown below. (by default it will be something like C:UsersSatoshisComputerDocumentsGitHubbtcpayserver for clarity, lets call it our: _clone local path_) then press clone.


	Now you will see the BTCPay Server repository has been cloned in your GitHub Desktop and you will be on the _master branch_.




### Create a Development Feature Branch


	Next we will practice working with our BTCPay Server repository that we just cloned to our computer using Github Desktop.


	When developing, you may want to work on different features at once. To do that, we typically want to create multiple feature branches instead of making all changes to the master branch.


	We’re using GitBash and some Git commands, so open GitBash. (If you prefer to only use GitHub desktop instead of GitBash, you can create branches there instead.)


	Once you have a GitBash terminal open, we need to change directory to our clone of BTCPay Server repository.


	To do this, navigate to our _clone local path_ with the change directory command: $ cd Documents/Github/btcpayserver


	You can see your clone of BTCPay Server is on the branch called master


	Make a copy of your master branch to do some development on it, with the command: $ git branch OurNewDevelopmentBranch


	Let’s view all the branches we have now, with the command: $ git branch you can see we have master and OurNewDevelopmentBranch


	In Git, we now have a copy of our forked BTCPay Server repository (our clone). When we want to switch between branches (copies of our clone), we need to tell Git which branch our development code changes should be assigned to. We do this by checking out our branch, with the command: $ git checkout OurNewDevelopmentBranch


	Now you are now on OurNewDevelopmentBranch in GitBash.


	Open your GitHub Desktop and you can see you are no longer on master and you are now on OurNewDevelopmentBranch


	In the top menu in Github Desktop click: Repository > Show In Explorer to see the location of the files.




## Local BTCPay Setup

### Bitcoin Regtest Network Setup


	For the next step make sure that you have Docker-Compose installed (included with Docker Desktop). Open a PowerShell terminal and navigate to your _clone local path_ and into the BTCPayServer.Tests directory with the command: $ cd Documents/Github/btcpayserver/BTCPayServer.Tests


	The BTCPay Server.Tests project contains the docker files needed to run our docker commands that will start all the project dependencies and create a local Regtest network.


	In Powershell, start the docker services with the command: `docker-compose up dev`(you must be in the BTCPay Server.Tests to run this command).


	In your PowerShell terminal you will first see the necessary docker images being pulled, then containers being built. If the build is successful the containers will all show as done.




![BTCPayServer.Tests powershell terminal](../img/Contribute/docker-compose-up-dev.png)

### Build Local BTCPay Server in Browser Mode

If you don’t want to do any coding and you simply want to create a local BTCPay Server for testing features in the interface, you can start a local BTCPay from the command line.

After building your [regtest network](#bitcoin-regtest-network-setup), navigate to your btcpayserverBTCPayServer directory and run the following command:

`bash
dotnet run --launch-profile Bitcoin
`

Open a new browser and visit: [http://127.0.0.1:14142](http://127.0.0.1:14142)

### Visual Studio Setup


	Open a file explorer to the BTCPay Server repository folder. Without opening any of the folders shown, look for the btcpayserver.sln item and right click it to Open with > Visual Studio. You may need to choose Open with > Choose another app … and look for Visual Studio if you have never opened this kind of file before.


	To get your Visual Studio set up choose View > Solution Explorer from the top menu. In this solution explorer you will see all the BTCPay Server files and folders.


	The top project is BTCPay Server, make sure it’s in bold. If it isn’t, right click it and choose Set as StartUp Project.


	Your Visual Studio is now set up and ready.




![VS Solution Explorer](../img/Contribute/vs-solution-explorer.png)

### Build Local BTCPay Server in Debug Mode


	Back in Visual Studio, click: Build > Build Solution


	In the output window, a successful build will look something like this: ========== Build: 6 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========


	Next press Debug > Start Debugging


	First a Visual Studio debug console will open which shows information about the status of your local BTCPay Server.


	Next a local BTCPay Server will be created in a web browser, showing on the home page that it’s in REGTEST mode.


	You now will have three windows to view: BTCPay Server browser session, our Visual Studio debug console and our BTCPay Server.Tests powershell terminal.


	Register a new user in your BTCPay Server and see the registration event is shown in your Visual Studio debug console.




![VS Debug Console](../img/Contribute/vs-debug-console.png)

![Local Regtest BTCPay](../img/Contribute/regtest-btcpay.png)

### Visual Studio Code Changes In Your Local BTCPay Server


	Make changes to code in Visual Studio (Ex: modify the Welcome to your BTCPay text in the ~BTCPayServerViewsAccountLogin.cshtml file)


	Refresh the page to see your text changes on the home page.


	Some code changes require re-start of Debugging for changes to take effect.


	Add breakpoints in Visual Studio and see those breakpoints get hit when you try to use a feature in your local BTCPay Server instance.




## Git Maintenance

### Sync Forked BTCPay Server Repository


	With many contributors adding code changes to the Master BTCPay Server Repository, sometimes your forked copy can fall behind, unless you merge new changes into your fork.


	If you go to your Fork of BTCPay Server on www.Github.com you will see a message saying that your branch is behind by some commits. Example: This branch is 32 commits behind btcpayserver:master.


	To update, you can use GitBash or simply use Github Desktop by clicking through the synchronization prompts.


	Open a GitBash terminal and update your BTCPay Server repository with the following commands.


	First always navigate to your _clone local path_ with the command: $ cd Documents/Github/btcpayserver and make sure you are on master branch.




```bash
$ git fetch upstream
$ git merge upstream/master
$ git commit -m <SomeCommitMessage>

Message prompt: …your branch is ahead of origin master by “X” commits… use git push to publish…

$ git add .
$ git push origin master
```

### Commit Code To Make Pull Request


	After you have made some code changes on a feature branch (Example: A feature branch called Fix/BugBranch) and you want to make a Pull Request to the BTCPay Server Repository. Open a GitBash terminal and navigate to your _clone local path_ with the command: $ cd Documents/Github/btcpayserver and make sure you are on the correct branch that you want to commit and use git status to check the files changed are the ones you want to commit.




```bash
$ git status
$ git add .
$ git commit

Text Editor appears to add your commit message…
Example Commit Message: Fix bug for update button

Accept Changes: Ctrl + x
Save Changes: Shift + y
Close Editor with: Enter

$ git push origin Fix/BugBranch
```

See your new branch has been created on you www.Github.com BTCPay Server Fork, review changes and create Pull Request.

### Create a Branch of a Pull Request

A great way to contribute without having to be an advanced developer is by testing other contributor’s pull requests. Manual testing is a great way to help other’s and ensure that BTCPay Server code changes are working properly. Here is an example of how to make a branch of someone else’s pull request, using this previous PoS Pull Request https://github.com/btcpayserver/btcpayserver/pull/454. Open a GitBash terminal and navigate to your _clone local path_ with the command: $ cd Documents/Github/btcpayserver and use git status to check you don’t have any other staged commits (git status is clear).

`bash
$ git status
$ git fetch upstream pull/454/head:pos-new-design
$ git branch (to your new testing branch called pos-new-design)
`

Note: Be sure to change the /454/ pull request number to the number of the one you would like to test. You can typically leave /head: as is, and add the name of the pull request branch after it.

### Delete Local Branch

If you delete a branch on your forked BTCPay repository on Github.com, your local copy on your machine will still remain, unless you delete it:

`bash
$ git checkout master
$ git branch -D <branch name>
`

Note: You can’t delete a branch if you have it checked out, so checkout another branch like master first, as shown in the example above.

## Working with Docker Containers

If you want to use Docker Commands when developing locally, you can run the following commands in the BTCPayServer.Tests directory.


	Show running containers docker ps


	Show logs for a container docker ps logs <container>


	Start Docker containers docker-compose up dev


	Stop Docker containers docker-compose down


	Destroy Docker containers docker-compoose down –v




## Greenfield API Development

The BTCPay Greenfield API is [currently being developed](../../FAQ/General.md#how-can-i-use-the-btcpay-server-api). You can find a [usage example here](../../Development/GreenFieldExample.md). The official Greenfield [API reference documentation](https://docs.btcpayserver.org/API/Greenfield/v1/) is available for developers who want to develop with the BTCPay REST API.

Developers who would like to contribute to the Greenfield API should follow the [developer guidelines](https://github.com/btcpayserver/btcpayserver/blob/master/docs/greenfield-development.md) used by the BTCPay project for additions or modifications. If you feel these guidelines are not clear, consider discussing your ideas in the community chat (development channel) or [open a github issue](https://github.com/btcpayserver/btcpayserver/issues/new/choose) to discuss endpoint implementation ideas.

## Working with the Database

BTCPay uses a PostgreSQL database by default. During development you can easily connect to it. This is helpful if you want to view how data is saved, modify records or use it to find issues during development. You can use the free tool [PgAdmin4](https://www.pgadmin.org/download/) to do this.

Start your BTCPay in your local environment and view your debug console to find your database connection details:

![PostgreSQL Configuration](../img/Contribute/DB-Config.png)

Next, open your PgAdmin and select: Servers > Create > Server… to connect to your server. Provide a name for your server and provide your host connection details from your Visual Studio debug console:

![PgAdmin Connection](../img/Contribute/DB-Connect.png)

Save to connect to your development btcpayserver database. In the btcpayserver database look for:
Schemas > public > Tables to see the tables which contain the BTCPay Server data.

As an example, you can see all the users registered to your development BTCPay by viewing the rows of the AspNetUsers table. Try changing the username of a registered user in the database, then Save Changes and Refresh (F5). Now log into your BTCPay using the new username and original password.

![PgAdmin Edit](../img/Contribute/DB-Edit.png)

## Questions

If you have questions about the BTCPay Server local development setup, you can join the [community chat](https://chat.btcpayserver.org/). If you have questions about any of the other tools or commands, etc. it’s likely you can find answers to your questions by doing a search on the internet or on [StackOverflow](https://stackoverflow.com/).



            

          

      

      

    

  

    
      
          
            
  # Testing BTCPay Server

Testing the software is a great way to contribute to the project. There are many different ways that someone can _test_ the software. Users who manually test (QA) the software and features to provide user experience, feedback or bugs to the project developers and designers is always appreciated.

Since the software is open source, anyone can test and audit the code. Some merchants or other technical users may want verify new or existing features by testing the software themselves. Developers working on the code can also benefit from understanding how to manually test certain actions in BTCPay.

This guide will show you how to manually test some common BTCPay features and assumes you already have your [Local Development Environment](./DevCode.md) set up. Once you understand the basic testing actions, most other features can be manually tested in a similar way.

[[toc]]

## Setup Regtest Network and Local BTCPay Server

First, be sure you have completed the following:


	Option 1: Test the latest code - [Pull master](./DevCode.md#sync-forked-btcpayserver-repository)


	Option 2: Test a new feature - [Pull request](./DevCode.md#create-a-branch-of-a-pull-request)


	Created a local [Regtest Network](./DevCode.md#bitcoin-regtest-network-setup)


	Built your solution and started [Browser mode](./DevCode.md#build-local-btcpayserver-in-browser-mode) or [Debug mode](./DevCode.md#build-local-btcpayserver-in-debug-mode)




## Using Docker Images for Mainnet Testing

Some features are not suitable for testing using a localhost development environment. Integration type features often require mainnet or testnet payments in order to be sufficiently tested. This will show you how to deploy a custom docker image containing an unreleased feature for testing on a live server.

Step 1:

[Fork, clone and create a branch](./DevCode.md#git-setup) of the [BTCPay Server repository](https://github.com/btcpayserver/btcpayserver) and name your branch: btcpay-branch. Make a modification, such as changing [this line](https://github.com/btcpayserver/btcpayserver/blob/master/BTCPayServer/Views/Home/Home.cshtml#L9) on your new branch.

Step 2:

[Fork, clone and create a branch](./DevCode.md#git-setup) of the [BTCPay Server Docker repository](https://github.com/btcpayserver/btcpayserver-docker) and name your branch: docker-branch.

Step 3:

Create a Docker Hub account, Docker repository, download Docker Desktop and Login to your account by following [these steps](https://docs.docker.com/docker-hub/).

Step 4:

Since BTCPay Server requires a blockchain sync, it’s easiest to use an already deployed & synced server. This server should be deployed referencing your own docker-branch created in step 2. See this example using the [LunaNode launcher](https://launchbtcpay.lunanode.com/):

![LunaNode Fork](../img/Contribute/lunanode-fork.png)

:::warning
Note the image above shows you must specify your GitHub repository url and branch name of your forked and cloned btcpayserver-docker repository you created in step 2.
::

Step 5:

Inside the root directory of your btcpay-branch there are Dockerfiles prefixed by the following: amd64, arm32v7, arm64v8. We need to build and push a custom image using the Dockerfile for the OS being used.

Replace <dockerUser> with your Dockerhub username. Replace the tag 1.0.0.1 with your own custom version tag or use latest tag in the following commands:

```docker
#build image
docker build -t <dockerUser>/btcpayserver:1.0.0.1 –file ./amd64.Dockerfile .

#push image
docker push <dockerUser>/btcpayserver:1.0.0.1
```

Step 6:

Check that your image appears in your Docker Hub repository and the version tag matches the one you have supplied in the push command above.

Step 7:

Locate the [btcpayserver.yml docker-fragment](https://github.com/btcpayserver/btcpayserver-docker/tree/master/docker-compose-generator/docker-fragments) in your local docker-branch created in step 2. Replace the btcpayserver image’s referenced repository to be your Docker image. Replace <dockerUser> with your Dockerhub username and tag version (example: 1.0.0.1) with the one you have supplied in your step 5 above.

`yaml
image: ${BTCPAY_IMAGE:-<dockerUser>/btcpayserver:1.0.0.1$<BTCPAY_BUILD_CONFIGURATION>?}
`

Step 8:

Push your local docker-branch changes to your BTCPayServer Docker repository on GitHub.

Step 9:

[Update your server](../../FAQ/ServerSettings.md#how-to-update-btcpay-server).

Now you can test your feature as if it was already released!

## Create Invoice

Creating an invoice and sending payment is an important feature in BTCPay and in order to manually test this, you must first:


	Create a Store


	Setup a Wallet




:::tip
Use the hot wallet for fastest wallet setup during testing. Import from … > a new/existing seed > check Is hot wallet > Generate
::

- Create an invoice for your store






## Pay Invoice




Open a new Powershell terminal and navigate to your BTCPayServer.Tests directory where our Docker-Compose commands are run for the project. Copy the amount and address for payment from your invoice. Add them into the following command:

.docker-bitcoin-cli.ps1 sendtoaddress “bcrt1qym96l8gztggldraywdumgmfw27u8p8h5w7h9kc” 0.00097449 then press Enter.

Notice that your invoice has now been paid in your local BTCPay Server.

![Test Paid Invoice](../img/Contribute/regtest-paid-invoice.png)

To pay other types of payments see [this guide](https://github.com/btcpayserver/btcpayserver/blob/master/BTCPayServer.Tests/README.md).

## Testers FAQ

### Start Debugging gives Error: No connection could be made because the target machine actively refused it. 127.0.0.1:39372

If you see this error, it means you did not set up your Regtest Network using the docker-compose up dev command in the BTCPayServer.Tests directory. This command will set up all the dependencies you need for services used by BTCPay in the local development environment. You must run it before you try to start debugging.

### Regtest payments are not showing as confirmed?

If you make a [test payment](#pay-invoice) and it’s stuck as unconfirmed, you should mine some blocks to add confirmations to your transaction.

`powershell
.\docker-bitcoin-generate.ps1 3
`

If you are missing things like test payment notifications or other expected events, this may be the reason.

### Which branch should be tested for major releases?

Testing master branch is acceptable because it will include the release changes. However, other commits which are not yet released may also be in master. It is always good to find issues before the release so master (or a specific PR) is the ideal branch to test.

You can check the [latest release](https://github.com/btcpayserver/btcpayserver/releases) to see the changes which are available for current deployments as well as the unreleased commits.

### Can I mark an invoice as paid?

No, you can’t mark an invoice as paid. If you need completed payment status for development, either [pay the invoice](#pay-invoice) or create the invoice for $0 which will be automatically paid upon creation.



            

          

      

      

    

  

    
      
          
            
  # Contributing to BTCPay Server in other ways

[[toc]]

## Create Videos & Graphics

Making videos that promote some features or that show how BTCPay Server works is a great way to help.
Video tutorials also help new users navigate around what BTCPay Server can offer them.

You can see examples of videos that are already on the Official BTCPay Server [YouTube channel](https://www.youtube.com/channel/UCpG9WL6TJuoNfFVkaDMp9ug/) for inspiration.

## Hosting Providers

The BTCPay Server community is looking for more VPS hosting providers to implement [1-Click BTCPay Server deployment](/Deployment/LunaNode.md) and make the deployment of software more accessible, decentralized and widely-available.

## Contribute to the Directory

The Directory has been created to showcase the possibilities of BTCPay Server for merchant checkouts, donations, fundraisers, or any other use-case users come up with.

It contains a non-exhaustive list of websites that use the software.

Anyone can [add a person or an organisation](https://directory.btcpayserver.org/newentry) to the [Directory](https://directory.btcpayserver.org/).
If you know how to use Github, you can directly create a Pull Request and add an entry by editing the .vuepress/list.js file.

Please note that only websites that use BTCPay Server are accepted in the Directory and entries are expected to be in English language.

## Project Discussions

Check out the [BTCPay Discussions Page](https://github.com/btcpayserver/btcpayserver/discussions) and provide feedback on new feature ideas and other project topics. Features that may be good ideas for the project but aren’t ready for development yet, can be found here.

## Community

You can help BTCPay Server even if you’re not a developer.

The easiest way is to use the software as a business or individual, provide feedback and [report any bugs or issues](https://github.com/btcpayserver/btcpayserver/issues) you or your customers encounter. Another great way is to join the [community](../Community.md) and help others troubleshoot by sharing information you may have from your experience using BTCPay Server.

Consider helping newcomers like the community helped you.

## Spreading the word

You like BTCPay Server, what it stands for and what it offers? Spread the word! It’s the easiest way to contribute and help the community.



            

          

      

      

    

  

    
      
          
            
  # How to contribute to BTCPay Server?

BTCPay Server is built and maintained entirely by volunteer contributors around the internet.

We welcome, appreciate and encourage new contributions.

Depending on your skills and interest, you can help in a number of ways:


	[Software](./Dev.md)
* [Development](./DevCode.md)
* [Testing](./DevTest.md)


	[Writing](./Write.md)
* [Tools](./WriteSoftware.md)
* [Documentation](./WriteDocs.md)
* [Blog](./WriteBlog.md)


	[Designing](./Design.md)


	[Translating](./Translate.md)


	[Miscellaneous](./Misc.md)




Every contribution is important and if you have any questions, feel free to consult our growing [community](../Community.md).



            

          

      

      

    

  

    
      
          
            
  # Translating BTCPay Server

[[toc]]

## Why translations matter

Translating BTCPay Server into multiple languages lets us reach a broader user base for the software and also decreases friction in the invoice checkout for customers that might not understand English perfectly.

## Requirements

BTCPay Server uses a translation platform called Transifex to allow contributors to translate it into more languages.

The community is currently working on translating the [invoice checkout page](https://www.transifex.com/btcpayserver/btcpayserver/dashboard/) and the [official website](https://www.transifex.com/btcpayserver/btcpayserver-website/dashboard/).

After a translation has been made on Transifex, the submittal process is completely automated and merged periodically into the BTCPay repository. Translations provided outside of Transifex, such as pull requests in Github will not be accepted.



## Step 1: View Existing Translations

First verify the language translation you would like to complete has not been started already. If it has already been started, you can complete the remaining strings. If you don’t see the language you are looking for, make a request to add it to the project and to be a translator for it.

## Step 2: Start New Translation

Look for the language you would like to translate. Some languages have the option for several regions. If your language request was denied, the reason is likely that the language is already being translated.

## Step 3: Translation

Line 1: Translate your Country-Code.



	Example for Brazilian Portuguese
	‘en’ translates to ‘pt-BR’








Line 2: The name of your language, in your language.

:::tip
This is the language name that will appear in user interface language dropdowns.
::

Example for French
 'English' translates to 'Français'







## Translation Tips

### Variables
`
{{Words}} like this will be replaced by a variable depending on user choices.
{{btcDue}} Example: 10
{{cryptoCode}} Example: BTC
`

They should not be translated, but they need to remain in the correct place in your translated string because their placement will vary by language.
```
French Example:
“Return to StoreName” translates to “Retourner sur {{storeName}}”

Japanese Example:
“Return to StoreName” translates to “{{storeName}} に戻る”
```

### Notifications
To stay up to date with new strings - enable alerts for new strings needing to be translated by enabling the watch language feature in Transifex.

Click on the “eye” icon (in red in the following screenshot).

![Transifex Alerts](../img/transifex-alert.png)

You have to click it for the each project you wish to follow.



## View Checkout Page For Context

Need context for a string?

Visit the BTCPay Server demo store [checkout page](https://store.btcpayserver.org/).

## Get help, ask questions

If you have any questions about translating, join the [#Translations channel](https://chat.btcpayserver.org/btcpayserver/channels/translations) on Mattermost.



            

          

      

      

    

  

    
      
          
            
  # Documenting BTCPay Server

[[toc]]

# Why documentation matters

Documentation is essential to give users of all skill levels concise and clear information about the software and how to use it. BTCPay server has many different use cases and as a result many different kinds of users seeking information from the documentation. Writers contributing to BTCPay Server are as important as any other contributor.

If you have technical knowledge in a certain area, want to help document new features or simply get involved in the BTCPay Server project, documentation is a great place to get started with contributing.

If you have writing skills or if you have a fair knowledge of the English language, then you can contribute to BTCPay Server or review the work of other contributors. Writing contributors can help in a number of places.

## BTCPay Documentation

Documentation work needing to be completed can be found in the [open issues page](https://github.com/btcpayserver/btcpayserver-doc/issues) on Github. For information on how to start a documentation task, see the [documentation guide](WriteDocs.md).

For documentation guidance or discussion of a new documentation idea, join the [#documentation channel on Mattermost](https://chat.btcpayserver.org/btcpayserver/channels/documentation).

## BTCPay Blog

Another great way to contribute is by writing content for the [BTCPay blog](WriteBlog.md). To get started on a blog topic, join the [#content creation channel on Mattermost](https://chat.btcpayserver.org/btcpayserver/channels/content-creation).

## Requirements

In order to contribute to BTCPay Server as a writer there are some requirements.

Since most of the documentation done in BTCPay Server is submitted and reviewed through Github, you must have a [Github account](https://github.com/). It’s also on Github that you can contribute by reviewing the documentation work done by others (pull requests).

Important note: Contributions explained in this documentation are meant to be done in English only. If you wish to contribute in other languages, see [Translations](./Translate.md).

## Recommended software

### Text Editor

It is recommended to have a Rich-Text editor.

[Notepad++](https://notepad-plus-plus.org/downloads/) is a decent software and easy to use for the newer contributors.

For more advanced users, [Visual Studio Code (VS Code)](https://visualstudio.microsoft.com/) is a good choice.
The Markdown All In One extension in VS Code is also recommended, for visual comfort while editing and the ability to preview Markdown changes. This is helpful for the BTCPay documentation which is written primarily in Markdown.

These are only recommended: If you already use other similar software that you’re accustomed to, you are free to continue using them.

### Version Control

To be able to manage your contributions (such as forking repositories, creating and working on branches, making pull requests and issues, etc.) it’s recommended you have [Github Desktop](https://desktop.github.com/). You can see the step by step guide to making a pull request using Github Desktop [here](./WriteSoftware.md).



            

          

      

      

    

  

    
      
          
            
  # Contribute to the blog

For the time being, the blog is hosted on Wordpress and the contributing process doesn’t require Github.

Simply hit us in the [chat](https://chat.btcpayserver.org) and we’ll discuss the writing proposed.

Subjects that are suitable for the blog include:


	BTCPay Server updates


	Tutorials


	Testimonies of how BTCPay Server helped you




Writing articles on our [Blog](https://blog.btcpayserver.org) helps spread the word on new features being implemented, or provides tutorials on how to use them.



            

          

      

      

    

  

    
      
          
            
  # Contribute to the documentation

Helping us keeping the present [Documentation](https://github.com/btcpayserver/btcpayserver-doc) up-to-date is an important contribution because BTCPay Server evolves at each release.

Beginners can view the following video on how to contribute to the BTCPay Server documentation:
[![Contributing to Documentation](https://img.youtube.com/vi/bSDROcdSSWw/mqdefault.jpg)](https://www.youtube.com/watch?v=bSDROcdSSWw “How to contribute to BTCPay Server documentation”)

The main documentation repository to fork/clone is the following: [BTCPay Server Documentation](https://github.com/btcpayserver/btcpayserver-doc)

If your Pull Request adds information in the [Documentation](https://github.com/btcpayserver/btcpayserver-doc/), [Website](https://github.com/btcpayserver/btcpayserver.org/) or [Directory](https://github.com/btcpayserver/directory.btcpayserver.org/) repositories, you can preview the changes directly in your web browser once your Pull Request is posted.

Simply click the details button as shown in the screenshot below. Then locate the file or section that you edited and verify that everything appears as you intended.

![NetlifyDeploymentPreview](../img/Contribute/Netlify_preview.png)

:::tip
It’s a good idea to use relative URLs instead of absolute URLs when editing links that redirect to pages that are part of the documentation already.
This helps the contributors setting up documentation locally.
[More info](https://v1.vuepress.vuejs.org/guide/markdown.html#internal-links/).
::



            

          

      

      

    

  

    
      
          
            
  # Contribute to the software stack

::: tip
If you have trouble finding a string or contributing to the software stack, ask the [community](../Community.md)

If your textual change is significant [open an issue on GitHub](https://github.com/btcpayserver/btcpayserver/issues/new/choose) and explain what you’d like to change and why.
::

## **Step 1**





Fork/Clone the main repository ([BTCPay Server](https://github.com/btcpayserver/btcpayserver/)) using Github and publish it.

![ContributeCloneRepo](../img/Contribute/ContributeCloneRepo.jpg)

![ContributeCloneRepo2](../img/Contribute/ContributeCloneRepo2.jpg)

## Step 2

Create a branch and name it (for example what file you’re working on).

![ContributeCreateBranch](../img/Contribute/ContributeCreateBranch.jpg)

![ContributeCreateBranch2](../img/Contribute/ContributeCreateBranch2.jpg)

## Step 3

Now open your branch in your file explorer.

![ContributeFindFile](../img/Contribute/ContributeFindFile.jpg)

You’re all set!
Open the file you wish to edit and work on it.
Once finished, save it.

## Step 4

Once your changes are saved, return to Github Desktop.
See your changes on the right hand side.

Name your contribution and describe it.
Click the Commit button in the bottom left.

![ContributeCommit](../img/Contribute/ContributeCommit.jpg)

![ContributeCommit2](../img/Contribute/ContributeCommit2.jpg)

## Step 5

Next, create a Pull Request by clicking the Create Pull Request button on the right to open a browser page.

![ContributeCreatePR](../img/Contribute/ContributeCreatePR.jpg)

Then describe what your Pull Request changes, give it a title, and click Create Pull Request.

![ContributeOpenPR](../img/Contribute/ContributeOpenPR.jpg)

Once your pull request is submitted, it has to be reviewed by the maintainers and contributors. If it gets accepted - congratulations, you’ve made your first contribution.



            

          

      

      

    

  

    
      
          
            
  # Azure Deployment

This setup is similar to the [Docker Deployment](https://docs.btcpayserver.org/Docker/), except that the docker-compose is hosted by Microsoft Azure.

## One-click setup

Start by clicking the following button:

[![Deploy to Azure](https://azuredeploy.net/deploybutton.svg “Deploy to Azure”)](https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fraw.githubusercontent.com%2Fbtcpayserver%2Fbtcpayserver-azure%2Fmaster%2Fazuredeploy.json)

You can log into [Azure](https://azure.microsoft.com/en-us/account/) with your Microsoft account.

Final installation steps:

Fill in the remaining options: ![Azure Resource Config](../img/AzureResourceConfig.png “Azure Resource Config”)
* Click ‘Purchase’ to confirm
* (Wait for Azure deployment)
* Type ip into the search bar and select the first option, BTCPayServerPublicIP
* Copy the hostname for your Azure deployment, under DNS name: ![Azure BTCPayServerPublicIP](../img/AzureBTCPayServerPublicIP.png “Azure BTCPayServer Public IP”)
* Visit it (all major browsers supported)
* Click ‘Register’ and create an account - This will be your admin account!
* At your domain registrar, point your domain at this hostname (read more: [DNS configuration](./ChangeDomain.md#setting-up-your-dns-record))
* Then, visit https://EXAMPLE.eastus.cloudapp.azure.com/server/maintenance
* Enter your domain name and click ‘Confirm’
* (Wait 1-5 minutes)
* Done! Visit https://EXAMPLE.MYSITE.com/stores to create your store and begin invoicing.

For advanced users, you can connect via SSH with the information on https://EXAMPLE.MYSITE.com/server/services/ssh, and:


	Run docker ps and docker logs xxx to view running processes


	Run btcpay-down.sh and btcpay-up.sh to stop and start the BTCPayServer




Approximate Cost (unpruned, Bitcoin-only, after Azure $200 free trial): 60 USD per month

After all your nodes have synced and you’ve confirmed everything works, follow [this guide](./AzurePennyPinching.md) to fine-tune for savings; costs should drop to 30 or 40 USD per month.

[![BTCPay Server - Azure](https://img.youtube.com/vi/xh3Eac66qc4/mqdefault.jpg “BTCPay Server - Azure”)](https://www.youtube.com/watch?v=xh3Eac66qc4 “BTCPay Server - Azure 1-Click”)

Learn more: [btcpayserver/btcpayserver-azure](https://github.com/btcpayserver/btcpayserver-azure)



            

          

      

      

    

  

    
      
          
            
  # How to penny-pinch your Azure deployment

This guide is for [Azure-deployed](https://github.com/btcpayserver/btcpayserver-azure) users who wishes to do some saving on their install.

Please do this only after your nodes are fully synched.
During synchronization you need a powerful setup.

Penny-pinching is an opportunity for you to better understand the resources you are consuming and tailor the configuration to your workload.

Downside:


	Running btcpay-update.sh or rebooting will take longer


	You might see 502 Bad Gateway and your node taking lots of time to start


	Your server might becomes very slow




Upside:


	50% savings




If you find that your server is too slow:


	Drop support for coins by editing the setting BTCPAY_DOCKER_COMPOSE in /etc/profile.d/btcpay-env.sh, or


	Increase the size of your Virtual Machine




:::warning
After some testing, it seems that following this guide for a setup on mainnet involving BTC+LTC+CLightning is a bit too much and makes the server very laggy.

Note that the server becomes less laggy as time passes after restart, so it might still be ok for your case.
If it is not acceptable you should switch from B1MS (20 USD/Month) type to a B2S (40 USD/Month) type.
::

## How much am I spending now?





Find out how much your installation costs:


	Go on the Azure portal


	Go to Subscription (If you don’t find the Subscription menu search Subscription in the search bar next to the notifications bell.)


	Go to Cost Analysis


	Select your Resource group (mine is called “dwoiqdwqb’)


	Timespan 30 days


	Click on apply




![Show Cost Microsoft Azure](../img/ShowCost.png “Show Cost Microsoft Azure”)

As you can see, my install costs 47.00 EUR/Month.
Most of the cost is spent on the virtual machine.

## What is my current configuration

First see what Virtual machine you currently have:


	Go on the Azure portal


	Go to Resource Groups


	Select your resource group


	Select BTCPayServerVM




![Show Microsoft Azure VM](../img/ShowVM.png “Show Microsoft Azure VM”)

As you can see the CPU is mainly unused, disk as well. We can probably cut some fat here.
Also my VM type is Standard_D1_v2. As you can see on [Azure Price Website](https://azureprice.net/).

![Show Azure Price](../img/ShowPrice.png “Show Azure Price”)

This cost me 0.0573444 EUR/H or 42.66 EUR/Month.

Now we know that downgrading this VM will bring us the largest cost benefit.
Let’s see how far we can go.

Connect by SSH to your VM, then:

`bash
sudo su -
docker stats
`

![Show Azure Resources](../img/ShowResources.png “Show Azure Resources”)

As you can see, I have 3.352 GB of RAM, and around 55%.

The free command also seems to tell me I have approximately 1GB of RAM in fat:

```
root@BTCPayServerVM:~# free –human

total used free shared buffers cached

Mem: 3.4G 3.2G 138M 30M 8.8M 991M
-/+ buffers/cache: 2.2G 1.1G
Swap: 0B 0B 0B
```

## Selecting a new Virtual Machine

Now we know that 2 GB of RAM, and a less powerful CPU will probably do the trick.

But first, you don’t want your machine to crash if it runs out of RAM, so you need to add some swap:
Note that /mnt is used in Azure for temporary data, and is optimized for low latency, this is why we set the swapfile here.

`bash
sudo su -
fallocate -l 2G /mnt/swapfile
chmod 600 /mnt/swapfile
mkswap /mnt/swapfile
swapon /mnt/swapfile
echo "/mnt/swapfile   none    swap    sw    0   0" >> /etc/fstab
`

As you can see, the swap got added:

```
root@BTCPayServerVM:~# free -h

total used free shared buffers cached

Mem: 3.4G 3.2G 141M 30M 9.8M 983M
-/+ buffers/cache: 2.2G 1.1G
Swap: 2.0G 0B 2.0G
```

Now, go back to [azureprice.net](https://azureprice.net/) and find something cheaper than 0.0573444 EUR/H.

![Azure VM comparison](../img/ShowB1.png “Azure VM comparison”)

Wow! Standard_B1ms cost only 0.02049219 EUR/H – let’s switch to it!

A quick look at [this article](https://www.singhkays.com/blog/understanding-azure-b-series/) shows us that this type of virtual machine is adapted for low CPU consumption with occasional burst. This is what BTCPay Server is about after the nodes are synched.


	Go on the Azure portal


	Go to Resource Groups


	Select your resource group


	Select BTCPayServerVM


	Select Size


	Select B1MS (if you don’t see, take a look at the [FAQ](#b1ms))


	Click Select




![Show Azure VM Size](../img/ShowSize.png “Show Azure VM Size”)

Wait between 5 and 15 minutes.

When Azure is happy:

![Happy Microsoft Azure](../img/HappyAzure.png “Happy Microsoft Azure”)

🎉 Congratulation! You just cut down the cost by 50% per month! :)

### FAQ: B1MS does not appear in the list <a name=”b1ms”></a>

In some situation, you might not see the Virtual Machine B1MS in the list.
It means your Azure hardware cluster does not support this type.

:::warning
Stopping your Virtual Machine will change the public IP Address of your server. If you configured a A (as opposed to CNAME) record in your domain registar, you’ll need to update it.
::

You need to go in:


	Your Virtual Machine resource


	Overview menu


	Click on Stop




![Stop Azure VM](../img/StopVM.png “Stop Azure VM”)

Wait until the Virtual Machine has stopped, then change the size.

Once the size is changed, go back to Overview and click on Start.



            

          

      

      

    

  

    
      
          
            
  # How to change the domain name of your BTCPay Server

This article assumes you used either [Azure](https://github.com/btcpayserver/btcpayserver-azure) deployment or [BTCPay Docker](https://github.com/btcpayserver/btcpayserver-docker) deployment.

Let’s assume I used Azure. After initially deploying, I get an invalid certificate (this is normal during setup):

![InvalidCertificate](../img/InvalidCertificate.png “Invalid HTTPs Certificate”)

To get a valid certificate, I need to change my server address from https://myawesomedemobtcpay.westeurope.cloudapp.azure.com/ to https://tothemoon.btcpayserver.com/.

## Setting up your DNS record

First, I bought my domain name btcpayserver.com from a registar. (I use [gandi.net](https://gandi.net/) because they are awesome.)

Once I got the domain name, I can access it in the Domains menu:

![Gandi1](../img/Gandi1.png “Gandi domains”)

So I click on my new domain btcpayserver.com, then go to the DNS Records menu, then I click Add:

![Gandi2](../img/Gandi2.png “Gandi DSN records”)

Here I want to make sure tothemoon.btcpayserver.com will resolve to the same IP address as myawesomedemobtcpay.westeurope.cloudapp.azure.com. We call this a CNAME record.

So I fill out:

`
Type: "CNAME",
Name: "tothemoon",
Hostname: "myawesomedemobtcpay.westeurope.cloudapp.azure.com." !! DO NOT FORGET THE '.' !!
`

![Gandi3](../img/Gandi3.png “Gandi add DNS record”)

Then I click ‘Create’. (Note that if you want to point directly to an IP address instead, you would use a type A record.)

Congratulations! Now let’s set it up on the other side, the BTCPayServer host.

## From your browser


	Visit https://myawesomedemobtcpay.westeurope.cloudapp.azure.com/server/maintenance


	Log in as an administrator, which is typically the first account created on the server.


	Enter new hostname tothemoon.btcpayserver.com and click ‘Update’.




![Maintenance](../img/Maintenance.png “BTCPay Server server settings”)

I wait a bit and go to https://tothemoon.btcpayserver.com - Success!

![Maintenance2](../img/Maintenance2.png “BTCPay Server working HTTPs certificate”)

## From the command line

I connect to my server via:

`bash
ssh btcpayserver@myawesomedemobtcpay.westeurope.cloudapp.azure.com
`

I enter the Password I chose during the Azure Wizard setup.

`bash
sudo su -
changedomain.sh tothemoon.btcpayserver.com
`

Success!



            

          

      

      

    

  

    
      
          
            
  # Dynamic DNS Service

## Motivation

Dynamic DNS is needed if:


	You are running BTCPay Server with a hosting provider that does not provide a default domain for your server


	You don’t want to buy your own domain name (e.g. mybusiness.com)


	You need to access your BTCPay Server over internet via HTTPS. (Your BTCPayServer is accessed by other internet users)




Then you want to use BTCPayServer Dynamic DNS service.

You don’t need Dynamic DNS Service if:


	You host BTCPay Server at home and only access it via the local network (just using HTTP locally or using Tor is fine)


	Your BTCPay Server should be only accessed by yourself (just use Tor browser and the Tor address of you instance)


	Your hosting provider provides a domain name for your server by default (i.e. Lunanode for example provides a subdomain of .lndyn.com for free, and Azure provides for .azurewebsites.net)




A Dynamic DNS Providers allows you to have a free domain like example.ddns.net for your server.
Additionally Dynamic DNS Providers expose a simple API to update the DNS record automatically when your BTCPay Server instance changes its external IP address.

BTCPay Server, when configured to use Dynamic DNS, will periodically check and update the DNS record if an external IP change is detected.

## How to use

### Step 1: Create the domain

First, create an account on a Dynamic DNS provider, the most popular providers are:


	[noip](https://www.noip.com/) (free)


	[duckdns](https://www.duckdns.org/) (free)


	[dyndns](https://dyn.com/) (not free)


	[google](https://domains.google.com/) (not free)




Once you’ve created an account, you can create a free domain name through their website.

### Step 2: Configure Dynamic DNS on BTCPay Server

You need to be administrator of your instance.
Go to Server Settings > Services > Dynamic DNS.


	Add a Dynamic DNS


	Select your Dynamic DNS provider


	Enter the domain you created in step 1


	Add the login and password you created in step 1


	Check the enabled box and save




### Step 3: Configure your BTCPay docker install to provide HTTPS certificates

If you are using a docker deployment, you also need to update your BTCPayServer install.
Connect via SSH to your instance and run:

`bash
BTCPAY_ADDITIONAL_HOSTS="example.ddns.net"
. btcpay-setup.sh -i
`

If you have any other hosts in BTCPAY_ADDITIONAL_HOSTS, just separate them with ,.



            

          

      

      

    

  

    
      
          
            
  # Google Cloud Deployment

This setup is similar to the [Docker Deployment](https://docs.btcpayserver.org/Docker/), except that the docker-compose is hosted by Google Cloud.

## Google Cloud shell setup

Google Cloud is alternative way to set up BTCPayServer.

Start by clicking the following button:

[![Open in Cloud Shell](https://gstatic.com/cloudssh/images/open-btn.svg “Cloud Shell”)](https://console.cloud.google.com/cloudshell/open?git_repo=https%3A%2F%2Fgithub.com%2Fbtcpayserver%2Fbtcpayserver-googlecloud&page=editor)

You can log into [Google Cloud Console](https://console.cloud.google.com) with your Google account.

Final installation steps:


	On Google cloud shell, Set the default project and zone where to deploy instance


	Change yaml file to configure VM instance and BTCPay server: ![GCE and BTCPay Config](../img/gcloud-yaml.png “Google Cloud yaml”)


	Change mode 755 for shell scripts  and run ‘deploy.sh <any deployname>’ to start depolyment


	(Wait for Google Cloud deployment for a minute)


	A static IP is shown on the Google cloud shell


	Go to your DNS service and map it with your domain name, say EXAMPLE.MYSITE.com


	ssh to the vm  from Google cloud console’s VM instances list


	on ssh, Go to /btcpayserver-docker directry and run ‘changedomain.sh EXAMPLE.MYSITE.com’


	Access to https://EXAMPLE.MYSITE.com by browser


	Click ‘Register’ and create an account - This will be your admin account!


	Done! Visit https://EXAMPLE.MYSITE.com/stores to create your store and begin invoicing.




For advanced users, you can connect via SSH with the information on https://EXAMPLE.MYSITE.com/server/services/ssh, and:


	Run docker ps and docker logs xxx to view running processes


	Run btcpay-down.sh and btcpay-up.sh to stop and start the BTCPayServer




Approximate Cost : 70 USD per month

Learn more: [btcpayserver/btcpayserver-googlecloud](https://github.com/btcpayserver/btcpayserver-googlecloud)



            

          

      

      

    

  

    
      
          
            
  # Hardware Deployment

Andreas Antonopoulos tells us “Not your keys, not your Bitcoin”.
Here’s another Bitcoin axiom “Your hardware. Your node. Your keys. Your Bitcoin”.

In order for your Bitcoin experience to be truly self-sovereign and trustless you should consider running nodes on your own hardware and internet connection.
BTCPay Server is an excellent way to run both Bitcoin & Lightning nodes.
Not only are you validating transactions you also get the ability to accept base layer Bitcoin and second layer Lightning payments.
To that end here are instructions to install and host your very own BTCPay Server.

The process is basically the following:


	Purchase and assemble hardware.


	Install base Operating System and configure networking.


	Install BTCPayServer-Docker.




While it may be possible to install BTCPayServer or parts of it’s architecture on ARM based single board computers (ie. Raspberry Pi, Odroid, OrangePi or NanoPC) the process may require additional skills and knowledge that are beyond the scope of this tutorial.
For the sake of speed, compatibility and ease of installation it is recommended that you use an Intel/AMD based computer with a minimum of 4 GB RAM and a 500 GB hard drive.  The Gigabyte Brix or Intel NUC lines of compact computers are a great place to start. They are basically small, fanless boxes that are built using laptop components.

BTCPayServer can be successfully installed on the following hardware.  The end result is a small, quiet node that is fast enough to sync from block zero.  The total cost is approximately $225 (including tax and delivery).  These are “off the shelf” components that can be purchased from any online retailer (TigerDirect, NewEgg, Amazon, BestBuy etc).   It will take roughly 24 hours to sync the Bitcoin blockchain. You can save little money by cutting the RAM and hard drive size in half.

1. Gigabyte Brix GB-BXBT-1900
![Gigabyte Brix GB-BXBT-1900](https://i1.wp.com/lightninginabox.co/wp-content/uploads/2018/08/20150603180458_m.png?resize=300%2C254&ssl=1 “Gigabyte Brix GB-BXBT-1900”)
2. Crucial 8GB DDR3L-1600 SODIMM
![Crucial 8GB DDR3L-1600](https://i0.wp.com/lightninginabox.co/wp-content/uploads/2018/08/204-pinsodimmddr3.png?resize=300%2C133&ssl=1 “Crucial 8GB DDR3L-1600 SODIMM”)
3. WD Blue 1TB Mobile Hard Disk Drive
![WD Blue 1 TB HDD](https://i1.wp.com/lightninginabox.co/wp-content/uploads/2018/08/81qCyd2gDL._SL1500_.jpg?resize=300%2C300&ssl=1 “WD Blue 1TB Mobile Hard Disk Drive”)

Other requirements are as follows:


	High speed internet connection.


	Static IP


	Domain Name


	Ability to open ports (80, 443, 9735) on your router.


	Tiny Screwdriver


	USB Thumb Drive


	USB Keyboard, Mouse and Monitor (for initial install only). Can be headless when completed.


	Four Port USB Hub




Assuming you purchased the hardware mentioned above, here are the build instructions.

Step 1 - Configure your domain name.
It can take several hours for DNS changes to propagate so you should do this step first.
Login to your domain registrar and point an A record from your domain to the external IP address of your internet connection.
I suggest that you use a subdomain (ie. btcpay.yourdomain.com).
To find your external IP address Google “whats my ip”.

Step 2 - Assemble your BTCPayBox (BTCPB).  If you already have your own Ubuntu Server you can skip to Step 6.


	Remove back cover with screwdriver.


	Insert RAM


	Install hard drive using included cage.




Step 3 - Download [Ubuntu 18.04 Desktop Image](https://releases.ubuntu.com/18.04/)

Step 4 - Download and install [Etcher](https://etcher.io/).  Etcher is software that is used to flash OS images to SD cards and USB Drives.
In this case we will be using Etcher to flash our USB Thumb Drive with the Ubuntu OS.

Step 5 - Connect your USB keyboard, mouse, monitor and thumb drive.  Press the power button to boot your BTCPB using the thumb drive.  The Ubuntu installation process is pretty simple and easy to follow. Here’s a tutorial from the Ubuntu website.  [Install Ubuntu Desktop](https://tutorials.ubuntu.com/tutorial/tutorial-install-ubuntu-desktop#0). The GB-BXBT-1900 with BIOS version F9 (and earlier) will need to be configured for compatibility with Ubuntu 18.04, due in part to Intel’s cstates. Refer to this [BXBT-1900 Setup Guide](https://gist.github.com/plembo/4d52f7c71739a54f1a023814bbb87e00) for help.

Step 6 - Give your BTCPB a static IP address on your local network. There are a few different ways to do this and you will find a ton of articles online. Here’s a pretty simple one to follow [How to configure a static IP address on Ubuntu 18.04](https://linuxconfig.org/how-to-configure-static-ip-address-on-ubuntu-18-04-bionic-beaver-linux).  To avoid conflicts with other devices on your network you should also set a “reservation” for your BTCPB.

Step 7 - Log into your router and forward ports 80, 443 and 9735 to your BTPCB’s local IP address. Every router is different and you should be able to find instructions for your router by searching for “Port Forward + your router make and model”.

Step 8 - Install OpenSSH Server, Fail2ban and GIT.  OpenSSH server allows you to connect to your server using SSH clients (ie. [Putty](https://www.putty.org/)) Fail2ban bans IP’s that attempt to connect to your server and show malicious signs.  GIT allows you to clone and manage repositories on github.com.
Open a new terminal window and type the following commands:


	sudo apt update


	sudo apt install -y openssh-server fail2ban git




Step 9 - Install Uncomplicated Firewall (UFW) and allow only specific ports. UFW is a user-friendly front-end for managing iptables firewall rules and its main goal is to make managing iptables easier or as the name says uncomplicated.
Install UFW


	sudo apt install ufw




This command allows SSH connections from your LAN only. Replace 192.168.1.0 with your own subnet.


	sudo ufw allow from 192.168.1.0/24 to any port 22




These ports need to be accessible from anywhere.  The default subnet is ‘any’ unless you specify one.


	sudo ufw allow 80, 443, 9735




Verify your configuration.


	sudo ufw status




Enable your firewall.


	sudo ufw enable




Reboot your BTCB and disconnect the keyboard, mouse and monitor. You should now be able to connect to your BTCB from another computer on your LAN via SSH.

Step 10 - Install BTCPayServer.
From another PC on your network login in to your BTCPB via SSH.

If you are using Windows


	download [Putty](https://releases.ubuntu.com/18.04/) and create a connection to your BTCPB.




If you are using another Linux machine open a new terminal and type in the following.
You will be prompted for your password.


	ssh user@LANIP (ie. bob@192.168.1.2)




Run the following commands.
Make sure you change the BTCPAY_HOST parameter to your own domain name.

Login as root


	sudo su -




Create a folder for BTCPay


	mkdir BTCPayServer


	cd BTCPayServer




Clone the btcpayserver-docker repository


	git clone https://github.com/btcpayserver/btcpayserver-docker


	cd btcpayserver-docker




Set your environment variables.
Run each command separately.


	export BTCPAY_HOST=”btcpay.YourDomain.com”


	export NBITCOIN_NETWORK=”mainnet”


	export BTCPAYGEN_CRYPTO1=”btc”


	export BTCPAYGEN_CRYPTO2=”ltc”


	export BTCPAYGEN_REVERSEPROXY=”nginx”


	export BTCPAYGEN_LIGHTNING=”clightning”




The last step is to launch the BTCPayServer setup script.


	. ./btcpay-setup.sh -i


	exit




Step 11
Go to https://btcpay.yourdomain.com and confirm that your nodes are syncing.
Enjoy!

If you don’t have the time or patience to build your own BTCPB there are a few merchants who can build one for you.


	[Lightning in a Box](https://lightninginabox.co)


	[Nodl.it](https://nodl.it)






            

          

      

      

    

  

    
      
          
            
  # Hardware As A Service

Multiple entities or companies in the Bitcoin space provide preinstalled hardware that include BTCPay Server.
Installed for example on Raspberry Pi or Rock64 devices, the BTCPay Server instance sits besides other software stacks.

This Hardware As A Service can be free or paid, and is mostly open-sourced for peer-review.

They are suitable for technical users to speed up the installation and intitial syncing process.
Less-technical users will find the 1-click or plug-and-play systems of these services incredibly practical.

:::warning Please note:
Hardware-as-a-Service products consist of multiple softwares tied together.
The BTCPay Server community has no knowledge of how BTCPay Server integrates into these services, and cannot provide any support for these types of [Manual Deployments](./ManualDeployment.md). Please report bugs and issues directly to the entity that provided you with BTCPay Server inside their product.
::

Here you can find a non-exhaustive list of companies that provide such a service:


	[Nodl](https://www.nodl.it/)


	[Hack0](https://www.dglab.com/en/works/hack0/)


	[LightningInABox](https://lightninginabox.co/)


	[MyNode](https://mynodebtc.com/)


	[RaspiBlitz](https://shop.fulmo.org/raspiblitz/)


	[Umbrel](https://getumbrel.com/)


	[Embassy](https://start9labs.com/)




Do you provide Hardware As A Service and are not listed here?
Open an issue to [get added to this list](https://github.com/btcpayserver/btcpayserver-doc/issues)



            

          

      

      

    

  

    
      
          
            
  # Deploying BTCPay - LunaNode Web-Wizard

This article explains the deployment of BTCPay Server through LunaNode Web-Wizard. [LunaNode](https://www.lunanode.com/) is Canadian based hosting provider that accept Bitcoin payments and requires no personal identification except for a phone number verification.

Their web-wizard is one of the easiest ways to deploy BTCPay Servers from a very user-friendly interface. This method is highly recommended if you don’t have a lot of technical knowledge. LunaNode will provide you with a generic domain for your server to get you started. If you want to set up a custom domain you will need to have some comfort with the command line interface.

For the price of around US$8.80 per month, you can have a self-hosted BTCpay, which includes a Bitcoin full node and Lightning Network node.

The video below explains all the step and customization of BTCPay.

[![BTCPay Server - LunaNode Web-Deployment](https://img.youtube.com/vi/NjslXYvp8bk/mqdefault.jpg “BTCPay Server - LunaNode Web-Deployment”)](https://www.youtube.com/watch?v=NjslXYvp8bk “BTCPay Server - LunaNode Web-Deployment”)

The installation is also covered in [this article](https://medium.com/@BtcpayServer/launch-btcpay-server-via-web-interface-and-deploy-full-bitcoin-node-lnd-in-less-than-a-minute-dc8bc6f06a3)

The third video covers setting BTCPay up on LunaNode, but also goes in-depth on setting up wallets, store and apps.

[![BTCPay Server - LunaNode Web-Deployment Video](https://img.youtube.com/vi/00YCc87RwnU/mqdefault.jpg “BTCPay Server - LunaNode Web-Deployment Video”)](https://www.youtube.com/watch?v=00YCc87RwnU “BTCPay Server - LunaNode Web-Deployment Video”)

## 1. Create the account and add credits

Register to LunaNode and add credits to your account. The process is quite straight-Forward. If by any chance you get stuck, [see this article](https://bitcoinshirt.co/how-to-create-store-accept-bitcoin/8/#Creating-an-account). Wait for the invoice confirmation.

## 2. Create the API Key

Once your account has been verified, and credits added, go to the API section and create a new API. Do not close that page and proceed to step 3.

## 3. Web-Wizard Deployment


	Go to [launchbtcpay.lunanode.com](https://launchbtcpay.lunanode.com/)


	Paste the API Key and API ID created in step 2. and continue.


	Use your own domain or automatically-generated one by LunaNode.


	Customize the web-wizard settings according to your needs.


	Click Launch VM. Wait 6-7 minutes for Virtual Machine deployment.




If you’ve used a custom domain,


	SSH into the VM using either the password generated by LunaNode or your private-public key pair.




7. Run the following commands.
`bash
$ sudo su -
$ export BTCPAY_HOST=your.cool.domain
$ export BTCPAY_PROTOCOL=https
$ export REVERSEPROXY_DEFAULT_HOST="$BTCPAY_HOST"
$ cd btcpayserver-docker
$ . btcpay-setup.sh -i
$ . btcpay-restart.sh -i
`


	Visit the domain, create an account and log in.




Now you need to wait for blockchain to sync fully. Depending on the plan you used and the number of coins you added, that can take 1-7 days. If you enable CPU utilization, with Bitcoin and LND, it will take 1-2 days. There is a US$ 3 one-time charge for faster sync if you enable the CPU utilization. The sync pop-up window will disappear when your node fully syncs.

## 4. Additional customization (optional)

Once your BTCPay Server instance is setup, as with any deployment method, you can add environment variables such as activating keysend and autopilot for LND as well as get access to your own transmuter.
For more information, visit the available [environment variable list](https://docs.btcpayserver.org/Docker/#generated-docker-compose). This requires knowledge of how to [SSH into your server](/FAQ/ServerSettings.md#how-to-ssh-into-my-btcpay-running-on-vps).



            

          

      

      

    

  

    
      
          
            
  # Minimal manual setup

:::danger
#### Not recommended for production use

Manual installation is NOT recommended for production use unless you are very confident with your Operating System and Bitcoin security expertise. If you are unsure use the docker deployment or one of the other [deployment options](./README.md).

#### You must have technical literacy and be able to resolve any issues on your own. The community will not provide extensive support for this deployment.
::

The process is basically the following:


	Download and sync [Bitcoin Core](https://bitcoincore.org)


	Clone and run [NBXplorer](https://github.com/dgarage/NBxplorer)


	Clone and run [BTCPay Server](https://github.com/btcpayserver/btcpayserver)




Take a look at our video to learn more:

[![BTCPay Server - Setup](https://img.youtube.com/vi/Xo_vApXTZBU/mqdefault.jpg “BTCPay Server - Setup”)](https://www.youtube.com/watch?v=Xo_vApXTZBU “BTCPay - Setup”)

## Warning: Not recommended to use in production

Manual installation is NOT recommended in production. It should be only used for learning purpose.

Instead you should use the [docker deployment](https://github.com/btcpayserver/btcpayserver-docker).

The docker deployment will provide you easy update system and make sure that all moving parts are wired correctly without any technical knowledge. It will also setup HTTPS for you.

## Typical manual installation

This steps have been done on Ubuntu 18.04, adapt for your own install.

For Testnet specific deployment, after installing Bitcoin, .NET Core, NBXplorer and BTCPayServer, see [Commands for Running in Testnet Mode](#testnet-specific-deployments)

### 1) Install Bitcoin Core 0.19.1

```bash
BITCOIN_VERSION=”0.19.1”
BITCOIN_URL=”https://bitcoin.org/bin/bitcoin-core-0.19.1/bitcoin-0.19.1-x86_64-linux-gnu.tar.gz”
BITCOIN_SHA256=”5fcac9416e486d4960e1a946145566350ca670f9aaba99de6542080851122e4c”

install bitcoin binaries
cd /tmp
wget -O bitcoin.tar.gz “$BITCOIN_URL”
echo “$BITCOIN_SHA256 bitcoin.tar.gz” | sha256sum -c - && mkdir bin && sudo tar -xzvf bitcoin.tar.gz -C /usr/local/bin –strip-components=2 “bitcoin-$BITCOIN_VERSION/bin/bitcoin-cli” “bitcoin-$BITCOIN_VERSION/bin/bitcoind”
rm bitcoin.tar.gz
```

### 2) Install .NET Core SDK 3.1
On my ubuntu 18.04 (See [these instructions](https://docs.microsoft.com/en-us/dotnet/core/install/linux-package-manager-ubuntu-1804) or [here](https://dotnet.microsoft.com/download) for different OS).

`bash
wget -q https://packages.microsoft.com/config/ubuntu/18.04/packages-microsoft-prod.deb
sudo dpkg -i packages-microsoft-prod.deb
sudo apt-get install apt-transport-https
sudo apt-get update
sudo apt-get install -y dotnet-sdk-3.1
`

### 3) Install NBXplorer

`bash
cd ~
git clone https://github.com/dgarage/NBXplorer
cd NBXplorer
git checkout latest
./build.sh
`

### 4) Install BTCPayServer

`bash
cd ~
git clone https://github.com/btcpayserver/btcpayserver
cd btcpayserver
git checkout latest
./build.sh
`

### 5) Run bitcoind

`bash
bitcoind
`

### 6) Run NBXplorer

`bash
cd ~/NBXplorer
./run.sh
`

### 7) Run BTCPayServer

`bash
cd ~/btcpayserver
./run.sh --port 8080 --bind 0.0.0.0
`

Now you can browse your server on port 8080.

## Testnet Specific Deployments

Follow the instructions for installing Bitcoin, .NET Core, NBXplorer and BTCPayServer above.

Then when running them use:

### Run bitcoind in testnet mode

`bash
bitcoind -testnet
`

### Run NBXplorer in testnet mode

`bash
cd ~/NBXplorer
./run.sh --network=testnet
`

### Run BTCPayServer in testnet mode

`bash
cd ~/btcpayserver
./run.sh --port 8080 --bind 0.0.0.0 --network testnet
`

## Additional links


	[Extended Manual Deployment](./ManualDeploymentExtended.md)


	[How to Setup BTC and Lightning Payment Gateway with BTCPayServer on Linux [Manual Install]](https://freedomnode.com/blog/114/how-to-setup-btc-and-lightning-payment-gateway-with-btcpayserver-on-linux-manual-install) from freedomnode.com.






            

          

      

      

    

  

    
      
          
            
  # Extended Manual Setup

This document lists steps for manually deploying BTCPay Server and additional related components. Following these steps is likely to take a long time. A shorter and more pragmatic approach is to use a [docker based deployment](https://github.com/btcpayserver/btcpayserver-docker).

The instructions also build all the application components from source which can be an advantage for certain audit and/or security scenarios.

:::danger

#### Not recommended for production use

Manual installation is NOT recommended for production use unless you are very confident with your Operating System and Bitcoin security expertise. If you are unsure use the docker deployment or one of the other [deployment options](./README.md).

#### You must have technical literacy and be able to resolve any issues on your own. The community will not provide extensive support for this deployment.
::

## Installation Steps Overview





The instructions in this article have been tested on Ubuntu 20.04. They should be applicable to other Linux based distributions. They are also based on all components being on the same host or virtual machine. It is possible to split the components across different hosts but these instructions don’t describe that.

An example hostname of mainnet.demo.btcpayserver.org has been used, it needs to be replaced with the hostname you are using for your BTCPay Server.

### Security

If you do use these instructions to install a BTCPay Server connected to the Bitcoin mainnet then at a minimum you should understand how the wallet mechanisms work. It’s highly recommended to read the two articles below and ask questions if anything is not clear.


	[BTCPay Wallet FAQ](/FAQ/Wallet.md)


	[Lightning Network and BTCPay (first section)](/LightningNetwork.md)




As an additional aid below is a list of iptables rules and instructions which should include all the ports that need to be open. NO WARRANTY. Use at your own risk, including risk of locking yourself out.

`bash
~$ vi iptables.txt
`

`
# Generated by iptables-save v1.6.1 on Mon May 27 18:48:11 2019
*filter
:INPUT ACCEPT [0:0]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]
-A INPUT -i lo -j ACCEPT
-A INPUT -p tcp -m tcp --dport 22 -j ACCEPT     # SSH
-A INPUT -p tcp -m tcp --dport 80 -j ACCEPT     # BTCPay HTTP
-A INPUT -p tcp -m tcp --dport 443 -j ACCEPT    # BTCPay HTTPS
-A INPUT -p tcp -m tcp --dport 8333 -j ACCEPT   # Bitcoind P2P
-A INPUT -p tcp -m tcp --dport 9375 -j ACCEPT   # Lightning P2P
-A INPUT -m conntrack --ctstate ESTABLISHED,RELATED -j ACCEPT
COMMIT
# Completed on Mon May 27 18:48:11 2019
`

`bash
~$ sudo iptables-restore < iptables.txt
`

At this point if you are still connected to you ssh session it’s a good sign. If not the rules are temporary and you can use whatever mechanism you have to remotely reboot your server and try again.

The rules have now been temporarily applied. To apply the rules automatically each time your server starts use the iptables-persistent package.

`bash
~$ sudo apt install iptables-persistent
`

If you subsequently change the iptables rules and want to save them across reboots use the command below.

`bash
~$ sudo netfilter-persistent save
`

## Unprivileged user

These instructions configure everything to run under an unprivileged user called admin.  Create this user before proceeding:

`bash
~$ sudo useradd -M admin && sudo usermod -L admin
`

### Prerequisites


	Postgresql


	Tor


	NGINX and Let’s Encrypt




### Application Components


	Bitcoin Daemon<sup>1,2</sup>


	NBXplorer<sup>1,2</sup>


	BTCPay Server<sup>1,2</sup>


	Lightning Network Daemon (lnd)<sup>2</sup>


	Ride The Lightning (RTL)<sup>2</sup>




<sup>1</sup> The bare minimum install of a BTCPay server only requires these items. Using a bare minimum configuration reduces the functionality: no lightning payments, no auto-renewal of TLS certificates, less reliable data store, less capable of handling NAT and more.

<sup>2</sup> Built from source code.

## Postgresql

Postgresql can be used by BTCPay Server in place of the default SQLite file based storage. It’s also possible to use MySQL.

##### 🚚 Install

`bash
~$ sudo apt install postgresql postgresql-contrib
`

##### ✒️ Configuration

Covered in BTCPay Server Configuration.

##### 👍 Check

```bash
~$ psql –version
psql (PostgreSQL) 12.2 (Ubuntu 12.2-4)
~$ sudo systemctl status postgresql
~$ sudo -u postgres psql
psql (12.2 (Ubuntu 12.2-4))
Type “help” for help.

postgres=# q
```

## Tor

Tor can be used by the following components to provide enhanced privacy and/or help with NAT traversal:


	Bitcoin-core Daemon


	Lightning Network Daemon (lnd).




Additional information running Bitcoin Core with Tor support can be found [here](https://github.com/bitcoin/bitcoin/blob/master/doc/tor.md).

##### 🚚 Install

`bash
~$ sudo apt install tor
`

##### ✒️ Configuration

`bash
~$ sudo vi /etc/tor/torrc  # (and uncomment two lines below)
ControlPort 9051
CookieAuthentication 1
~$ sudo systemctl restart tor
`

Covered further in Bitcoin and Lightning Network Daemon sections.

##### 👍 Check

`bash
~$ tor --version
Tor version 0.4.2.7
~$ sudo netstat -tlnp | grep tor # (lines below correspond to the tor control port and SOCKS proxy)
tcp        0      0 127.0.0.1:9050          0.0.0.0:*               LISTEN      1376/tor
tcp        0      0 127.0.0.1:9051          0.0.0.0:*               LISTEN      1376/tor
`

## NGINX and Let’s Encrypt

NGINX is used as a web server to manage HTTP requests to BTCPay Server and Ride The Lightning. Paired with Let’s Encrypt it allows seamless procurement and renewal of a TLS certificate for your BTCPay Server instance.

Let’s Encrypt is a free service for procuring and renewing TLS certificates. The service comes with scripts that can be installed to automatically manage the whole process.

##### 🚚 Install

##### 1. Install NGINX.

`bash
~$ sudo apt install nginx
`

##### 2. Install Let’s Encrypt

`bash
~$ sudo apt install certbot python3-certbot-nginx
`

##### ✒️ Configuration

##### 1. Let’s Encrypt TLS certificate

You must create an A or AAAA record for <your domain name> that points to the IP address of your server instance.
If your server is behind NAT then you need to forward port 80 to your instance.

The certbot script works by checking for a specific file on the web server hosting the requested domain. If it can’t get the file the TLS certificate won’t be issued. If the initial attempt fails it will be periodically re-attempted or you can simply re-run the command.

`bash
sudo certbot --nginx -d <your domain name> # (e.g: sudo certbot --nginx -d mainnet.demo.btcpayserver.org)
`

##### 2. Add NGINX configuration file

The configuration file below has been copied from the BTCPay Server docker install.

Search for “mainnet.demo.btcpayserver.org” and replace it with your own domain name.

`bash
~$ vi /etc/nginx/conf.d/default.conf
`

```
If we receive X-Forwarded-Proto, pass it through; otherwise, pass along the
scheme used to connect to this server
map $http_x_forwarded_proto $proxy_x_forwarded_proto {

default $http_x_forwarded_proto;
‘’ $scheme;

}
If we receive X-Forwarded-Port, pass it through; otherwise, pass along the
server port the client connected to
map $http_x_forwarded_port $proxy_x_forwarded_port {

default $http_x_forwarded_port;
‘’ $server_port;

}
If we receive Upgrade, set Connection to “upgrade”; otherwise, delete any
Connection header that may have been passed to this server
map $http_upgrade $proxy_connection {

default upgrade;
‘’ close;

}
Apply fix for very long server names
server_names_hash_bucket_size 128;
Prevent Nginx Information Disclosure
server_tokens off;
Default dhparam
Set appropriate X-Forwarded-Ssl header
map $scheme $proxy_x_forwarded_ssl {

default off;
https on;

}

gzip_types text/plain text/css application/javascript application/json application/x-javascript text/xml application/xml application/xml+rss text/javascript;
log_format vhost ‘$host $remote_addr - $remote_user [$time_local] ‘

‘”$request” $status $body_bytes_sent ‘
‘”$http_referer” “$http_user_agent”’;

access_log off;
HTTP 1.1 support
proxy_http_version 1.1;
proxy_buffering off;
proxy_set_header Host $http_host;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection $proxy_connection;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $proxy_x_forwarded_proto;
proxy_set_header X-Forwarded-Ssl $proxy_x_forwarded_ssl;
proxy_set_header X-Forwarded-Port $proxy_x_forwarded_port;
proxy_buffer_size 128k;
proxy_buffers 4 256k;
proxy_busy_buffers_size 256k;
client_header_buffer_size 500k;
large_client_header_buffers 4 500k;
http2_max_field_size 500k;
http2_max_header_size 500k;
Mitigate httpoxy attack (see README for details)
proxy_set_header Proxy “”;

	server {
	server_name mainnet.demo.btcpayserver.org;
listen 80;
access_log /var/log/nginx/access.log vhost;
return 301 https://$host$request_uri;

}
server {

client_max_body_size 100M;
server_name mainnet.demo.btcpayserver.org;
listen 443 ssl http2 ;
access_log /var/log/nginx/access.log vhost;
ssl_protocols TLSv1.2;
ssl_ciphers ‘ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-POLY1305:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-ECDSA-AES128-SHA256:ECDHE-RSA-AES128-SHA256’;
ssl_prefer_server_ciphers on;
ssl_session_timeout 5m;
ssl_session_cache shared:SSL:50m;
ssl_session_tickets off;
ssl_certificate /etc/letsencrypt/live/mainnet.demo.btcpayserver.org/cert.pem;
ssl_certificate_key /etc/letsencrypt/live/mainnet.demo.btcpayserver.org/privkey.pem;
ssl_dhparam /etc/letsencrypt/ssl-dhparams.pem;
ssl_stapling on;
ssl_stapling_verify on;

ssl_trusted_certificate /etc/letsencrypt/live/mainnet.demo.btcpayserver.org/fullchain.pem;

add_header Strict-Transport-Security “max-age=31536000” always;
#include /etc/nginx/vhost.d/default;

Here is the main BTCPay Server application
location / {

proxy_pass http://127.0.0.1:23000;

}

Include the next two stanzas if and only if you want to expose your lightning gRPC & RPC interfaces to the internet
location /lnrpc.Lightning {

grpc_pass grpcs://127.0.0.1:10009;

}

	location /lnd-rest/btc/ {
	rewrite ^/lnd-rest/btc/(.*) /$1 break;
proxy_pass https://127.0.0.1:8080/;

}

Include this stanza if you are planning to set up Ride The Lightning (RTL)
location /rtl/ {

proxy_pass http://127.0.0.1:3000/rtl/;

}

}

`bash
~$ sudo systemctl restart nginx
~$ sudo systemctl status nginx
`

If there is an error message restarting nginx try:

`bash
sudo journalctl -xe --unit nginx
`

👍 Check

1. Check Let’s Encrypt

It can be a little bit tricky to get everything set up correctly for the Let’s Encrypt script to work correctly. Some additional commands are listed below to help with any troubleshooting.

```bash
~$ sudo certbot certificates
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Found the following certs:



	Certificate Name: mainnet.demo.btcpayserver.org
	Domains: mainnet.demo.btcpayserver.org
Expiry Date: 2019-08-10 18:00:31+00:00 (VALID: 79 days)
Certificate Path: /etc/letsencrypt/live/mainnet.demo.btcpayserver.org/fullchain.pem
Private Key Path: /etc/letsencrypt/live/mainnet.demo.btcpayserver.org/privkey.pem









	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	































































































































































```

`bash
~$ cat /etc/cron.d/certbot # (check the cron job exists)
0 */12 * * * root test -x /usr/bin/certbot -a \! -d /run/systemd/system && perl -e 'sleep int(rand(43200))' && certbot -q renew
`

`bash
~$ sudo tail /var/log/letsencrypt/letsencrypt.log # (check for problems)
2019-05-22 19:36:36,062:DEBUG:certbot.main:certbot version: 0.31.0
`

```bash
~$ sudo certbot renew –dry-run # (test renewal)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
** DRY RUN: simulating ‘certbot renew’ close to cert expiry
**          (The test certificates below have not been saved.)


	Congratulations, all renewals succeeded. The following certs have been renewed:
	/etc/letsencrypt/live/mainnet.demo.btcpayserver.org/fullchain.pem (success)





** DRY RUN: simulating ‘certbot renew’ close to cert expiry
**          (The test certificates above have not been saved.)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
```

2. Check NGINX.

`bash
~$ sudo nginx -v
nginx version: nginx/1.18.0 (Ubuntu)
`

`bash
~$ sudo netstat -tlnp | grep nginx
tcp 0 0 0.0.0.0:443 0.0.0.0:* LISTEN 266275/nginx: maste
tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN 266275/nginx: maste
tcp6 0 0 :::443 :::* LISTEN 266275/nginx: maste
tcp6 0 0 :::80 :::* LISTEN 266275/nginx: maste
`

`bash
~$ sudo journalctl -xe --unit nginx --follow
--
-- A start job for unit nginx.service has finished successfully.
--
-- The job identifier is 19471.
`

Attempt to open your web site in a browser. At this point it is expected that a 502 Bad Gateway`error will occur. The `nginx logs can be checked to verify that the connection attempt was received.

`bash
~$ tail /var/log/nginx/access.log
mainnet.demo.btcpayserver.org 127.0.0.1 - - [27/Jul/2020:12:19:57 +0100] "GET / HTTP/2.0" 502 552 "-" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.89 Safari/537.36"
`

If there is a problem then the nginx error log can also be checked.

`bash
~$ tail /var/log/nginx/error.log
`

Bitcoin Daemon

The gateway to the Bitcoin network for BTCPay Server components.

🚚 Install

The full instructions to build Bitcoin Core from source are [here](https://github.com/bitcoin/bitcoin/blob/master/doc/build-unix.md).

The alternative to building from source is to download a signed binary distribution from https://bitcoincore.org/en/download/.

`bash
~$ wget https://bitcoincore.org/bin/bitcoin-core-0.20.0/bitcoin-0.20.0-x86_64-linux-gnu.tar.gz
~$ wget https://bitcoincore.org/bin/bitcoin-core-0.20.0/SHA256SUMS.asc
`

1. Install Pre-requisites and dependencies

These instructions do not build the Bitcoin Core GUI components as they are not needed for BTCPay Server.

`bash
~$ sudo apt install build-essential libtool autotools-dev automake pkg-config bsdmainutils python3
~$ sudo apt install libevent-dev libboost-system-dev libboost-filesystem-dev libboost-test-dev libboost-thread-dev libminiupnpc-dev libzmq3-dev
`

2. Download and Build Source

Before cloning the Bitcoin Core repository identify the most recent stable version. One convenient way to do this is on the GitHub repository page look at the latest version under the “Releases” heading. At the time of writing the stable version is 0.20.0. Adjust the tag in the git clone command below for the stable version you want to build.

`bash
~$ cd src
~/src$ git clone --depth 1 --branch v0.20.0 https://github.com/bitcoin/bitcoin.git
~/src$ cd bitcoin
`

A specific version of the Berkeley DB dependency needs to be installed.

`bash
~/src/bitcoin$./contrib/install_db4.sh `pwd`
`

Use the autoconf scripts to generate the make files and then build.

`bash
~/src/bitcoin$./autogen.sh
~/src/bitcoin$ export BDB_PREFIX='/home/admin/src/bitcoin/db4'
~/src/bitcoin$./configure BDB_LIBS="-L${BDB_PREFIX}/lib -ldb_cxx-4.8" BDB_CFLAGS="-I${BDB_PREFIX}/include"
~/src/bitcoin$ make
~/src/bitcoin$ sudo make install
~/src/bitcoin$ bitcoind -version
Bitcoin Core version v0.20.0
`

3. Create the configuration file

An example configuration file is available on the Bitcoin Core repository at https://github.com/bitcoin/bitcoin/blob/master/share/examples/bitcoin.conf.

Create a bitcoin.conf file to suit your needs. An example file that is suitable for BTCPay Server is shown below. This configuration does not prune blocks which means as of May 2019 you will require 235 GB for the Bitcoin blockchain.

`bash
~$ vi bitcoin.conf
`

`
server=1 # need RPC for btcpay.
rpcbind=127.0.0.1 # loopback is default for 0.18.0 but no harm making sure.
whitelist=127.0.0.1 # for nbxplorer.
rpcallowip=127.0.0.1/32 # loopback is default but again no harm.
zmqpubrawblock=tcp://127.0.0.1:28332 # needed for lightning.
zmqpubrawtx=tcp://127.0.0.1:28333 # needed for lightning.
#prune=5000 # Recommended if not enough disk space for full 600+GB blockchain.
`

Copy the file to the directory specified in the systemd service file and assign read permissions to all users.

`bash
~$ sudo mkdir -p /etc/bitcoin
~$ sudo cp bitcoin.conf /etc/bitcoin
~$ sudo chmod 644 /etc/bitcoin/bitcoin.conf
`

5. Create a systemd service

An example systemd service file is available in the Bitcoin Core repository at https://raw.githubusercontent.com/bitcoin/bitcoin/master/contrib/init/bitcoind.service.

Edit the service file depending on your needs.

In the example below the User and Group have been changed to use the admin user instead of requiring a new bitcoin user. If the admin user on your system is intended for running BTCPayServer this is a reasonable choice. Otherwise consider creating a dedicated bitcoin user.

`bash
~$ vi bitcoind.service
`

```
[Unit]
Description=Bitcoin daemon
After=network.target

[Service]
ExecStart=/usr/bin/bitcoind -daemon 


-pid=/run/bitcoind/bitcoind.pid -conf=/etc/bitcoin/bitcoin.conf -datadir=/var/lib/bitcoind




# Make sure the config directory is readable by the service user
PermissionsStartOnly=true
ExecStartPre=/bin/chgrp admin /etc/bitcoin


# Process management

Type=forking
PIDFile=/run/bitcoind/bitcoind.pid
Restart=on-failure
TimeoutStopSec=600

# Run as admin:admin
User=admin
Group=admin

# /run/bitcoind
RuntimeDirectory=bitcoind
RuntimeDirectoryMode=0710

# /etc/bitcoin
ConfigurationDirectory=bitcoin
ConfigurationDirectoryMode=0710

# /var/lib/bitcoind
StateDirectory=bitcoind
StateDirectoryMode=0710



# Hardening measures

# Provide a private /tmp and /var/tmp.
PrivateTmp=true

# Deny access to /home, /root and /run/user
ProtectHome=true

# Mount /usr, /boot/ and /etc read-only for the process.
ProtectSystem=full

# Disallow the process and all of its children to gain
# new privileges through execve().
NoNewPrivileges=true

# Use a new /dev namespace only populated with API pseudo devices
# such as /dev/null, /dev/zero and /dev/random.
PrivateDevices=true

# Deny the creation of writable and executable memory mappings.
MemoryDenyWriteExecute=true

[Install]
WantedBy=multi-user.target
```

Once the service file is ready complete the commands below.

`bash
~$ sudo cp bitcoind.service /etc/systemd/system
~$ sudo systemctl enable --now bitcoind
~$ sudo systemctl status bitcoind
...
Jul 26 21:51:52 ubuntu systemd[1]: Started Bitcoin daemon.
`

If the start attempt shows an error message check the log using:

`bash
sudo journalctl -xe --unit bitcoind
`

6. Create a symbolic link to the bitcoind cookie file

The bitcoin-cli client needs to authenticate to bitcoind for RPC calls. The easiest way to allow this is to create a symbolic link to the cookie file.

`bash
~$ cd ~
~$ ln -s /var/lib/bitcoind/.cookie .bitcoin/.cookie
`

It’s not vital to perform this step but if not done then every bitcoin-cli command needs to specify the path to the cookie file as below.

`bash
~$ bitcoin-cli -rpccookiefile=/var/lib/bitcoind/.cookie getblockchaininfo
`

👍 Check

It will take Bitcoin anywhere from a few hours to a few days to synchronise the blockchain. Use any or all of the commands below to check its status.

`bash
~$ sudo systemctl status bitcoind
Active: active (running) since Sun 2020-07-26 21:51:52 IST; 2min 47s ago
`

`bash
~$ tail /var/lib/bitcoind/debug.log -f
...
2020-07-26T20:55:09Z UpdateTip: new best=0000000000000361c37dfb6fa905ef967b95411fa96f7dcb4eca5dd4434d9e59 height=126732 version=0x00000001 log2_work=62.952182 tx=560114 date='2011-05-25T21:26:08Z' progress=0.001018 cache=43.6MiB(291168txo)
...
`

```bash
~$ bitcoin-cli getblockchaininfo
{


“chain”: “main”,
“blocks”: 133015,
“headers”: 640929,
“bestblockhash”: “0000000000000e81b67de8d61eab726f40585bed954b1dd59f86ab10e4e55398”,
“difficulty”: 876954.4935135372,
“mediantime”: 1308897947,
“verificationprogress”: 0.001530462018729556,
…







}

When the verificationprogress gets to either 0.99.. or 1.0 your node has synchronised. To double check you can also use a public block explorer such as [https://blockstream.info/](https://blockstream.info/) to view the latest Bitcoin block and compare it to the blocks value from the bitcoin-cli getblockchaininfo result.

##### 👍 Check Tor and Bitcoin

If Tor was installed prior to the Bitcoin Daemon then it should have automatically registered and begun listening on a torv2 onion address (note support for torv3 onion addresses is in the [pipeline](https://github.com/bitcoin/bitcoin/issues/18884)).

The easiest way to get your Bitcoin Daemon torv2 address is using bitcoin-cli:

```bash
bitcoin-cli getnetworkinfo
{

“version”: 200100,
“subversion”: “/Satoshi:0.20.1/”,
“protocolversion”: 70015,
“localservices”: “0000000000000409”,
…

“localaddresses”: [
{

“address”: “192.168.11.4”,
“port”: 8333,
“score”: 1

},
{

“address”: “v5j6hfz4xafmeckf.onion”,
“port”: 8333,
“score”: 156

}

],
“warnings”: “”

}

An alternative approach is to search the Bitcoin Dameon log file:

`bash
~$ cat /var/lib/bitcoind/debug.log | grep onion
2019-05-23T18:24:22Z tor: Got service ID 4d4al7v4hj5p7bb6, advertising service 4d4al7v4hj5p7bb6.onion:8333
2019-05-23T18:24:22Z AddLocal(4d4al7v4hj5p7bb6.onion:8333,4)
`

If there is a problem and no onion address can be found in the log file then check for “tor” related error messages:

`bash
~$ cat /var/lib/bitcoind/debug.log | grep tor
2020-07-27T08:03:28Z torcontrol thread start
2020-07-27T08:03:28Z tor: Authentication cookie /run/tor/control.authcookie could not be opened (check permissions)
`

The above error message can occur if the user accounts running the Bitcoin service does not have read access to the Tor authentication cookie file, [more info](https://github.com/bitcoin/bitcoin/blob/master/doc/tor.md#3-automatically-listen-on-tor). To fix this particular error add the required user account to the debian-tor group.

`bash
sudo usermod -a -G debian-tor admin
`

To change your onion address:

```bash
~$ rm /var/lib/bitcoind/onion_private_key
~$ sudo systemctl restart bitcoind
~$ bitcoin-cli getnetworkinfo | grep onion


“name”: “onion”,
“address”: “qud5iwbntqxlfwjv.onion”,




```

To check your onion address from a remote host with tor installed:

```bash
~$ torsocks –shell
~$ telnet 4d4al7v4hj5p7bb6.onion 8333


Trying 127.42.42.0…
Connected to 127.42.42.0.
Escape character is ‘^]’.




~$ exit
```

To connect another bitcoind instance to your new node:

```bash
~$ bitcoin-cli addnode “4d4al7v4hj5p7bb6.onion” “add”
~$ bitcoin-cli getaddednodeinfo
{



“addednode”: “4d4al7v4hj5p7bb6.onion”,
“connected”: true,
“addresses”: [



	{
	“address”: “4d4al7v4hj5p7bb6.onion:8333”,
“connected”: “outbound”





}




]




}




```

NBXplorer

NBXplorer is a dotnet core application that monitors the Bitcoin blockchain for transactions of interest to your BTCPay Server.

🚚 Install

1. Install .Net Core

Check [follow the install instuctions](https://docs.microsoft.com/en-us/dotnet/core/install/linux-ubuntu#2004-) (.Net Core 3.1.6 at the time of writing)

`bash
~$ wget https://packages.microsoft.com/config/ubuntu/20.04/packages-microsoft-prod.deb -O packages-microsoft-prod.deb
~$ sudo dpkg -i packages-microsoft-prod.deb
~$ sudo apt update
~$ sudo apt install apt-transport-https
~$ sudo apt update
~$ sudo apt install dotnet-sdk-3.1
~$ dotnet --version
3.1.302
`

2. Build NBXplorer

`bash
~$ cd ~; mkdir -p src; cd src
~/src$ git clone https://github.com/dgarage/NBXplorer
~/src$ cd NBXplorer
~/src/NBXplorer$./build.sh
`

3. Create a systemd service

An example systemd service file is shown below. Adjust the paths, User and Group accordingly.

`bash
~$ vi nbxplorer.service
`

```
[Unit]
Description=NBXplorer daemon
Requires=bitcoind.service
After=bitcoind.service

[Service]
WorkingDirectory=/home/admin/src/NBXplorer
ExecStart=/home/admin/src/NBXplorer/run.sh
User=admin
Group=admin
Type=simple
PIDFile=/run/nbxplorer/nbxplorer.pid
Restart=on-failure

[Install]
WantedBy=multi-user.target
```

`bash
~$ sudo cp nbxplorer.service /etc/systemd/system
~$ sudo systemctl enable --now nbxplorer
`

👍 Check

`bash
~$ sudo journalctl -xe --unit nbxplorer --follow
May 23 19:13:35 btc run.sh[8065]: info: Configuration: Data Directory: /home/admin/.nbxplorer/Main
May 23 19:13:35 btc run.sh[8065]: info: Configuration: Configuration File: /home/admin/.nbxplorer/Main/settings.config
May 23 19:13:35 btc run.sh[8065]: info: Configuration: Network: Mainnet
...
May 23 19:20:04 btc run.sh[8065]: info: Events: BTC: New block 0000000000000000000c405ba5df5f5533359a4393247a0c52d26c458d4dd989 (577449)
`

If it doesn’t start correctly stop the service and run the application directly to get any error messages.

`bash
~$ sudo systemctl stop nbxplorer
~$ cd ~; pushd ./src/NBXplorer; ./run.sh; popd
`

🚨 Update

Updating could break things. Be careful on a live system.

`bash
~$ sudo systemctl stop nbxplorer
~$ cd ~; pushd ~/src/NBXplorer; git pull; ./build.sh; popd;
~$ sudo systemctl start nbxplorer
`

BTCPay Server

Like NBXplorer the BTCPay Server application is also .NET Core. The install steps assume .NET Core was previosuly installed.

🚚 Install

1. Build BTCPay Server

`bash
~$ cd ~; mkdir -p src; cd src
~/src$ git clone https://github.com/btcpayserver/btcpayserver.git
~/src$ cd btcpayserver
~/src/btcpayserver$./build.sh
`

2. Create Postgresql Database.

By default BTCPay Server will store data in a single SQLite file. A more robust option is to use Postgresql which requires the appropriate database and user to exist.

`bash
~$ sudo -u postgres psql
postgres=# create database btcpay;
postgres=# create user btcpay with encrypted password 'urpassword';
postgres=# grant all privileges on database btcpay to btcpay;
postgres=#\q
`

3. Create a configuration file

`bash
$ vi btcpay.config
`

`
Database
postgres=User ID=btcpay;Password=urpassword;Host=localhost;Port=5432;Database=btcpay;
`

`bash
~$ sudo mkdir /etc/btcpay
~$ sudo cp btcpay.config /etc/btcpay
~$ sudo chmod 644 /etc/btcpay/btcpay.config
`

4. Create a systemd service.

An example systemd service file is shown below. Adjust the paths, User and Group accordingly.

`bash
~$ vi btcpay.service
`

```
[Unit]
Description=BTCPay Server
Requires=nbxplorer.service
After=nbxplorer.service

[Service]
WorkingDirectory=/home/admin/src/btcpayserver
Environment=BTCPAY_BTCEXTERNALRTL=”server=https://mainnet.demo.btcpayserver.org/rtl;cookiefile=/var/lib/rtl/.cookie”
ExecStart=/home/admin/src/btcpayserver/run.sh –conf=/etc/btcpay/btcpay.config
User=admin
Group=admin
Type=simple
PIDFile=/run/btcpayserver/btcpayserver.pid
Restart=on-failure

[Install]
WantedBy=multi-user.target
```

`bash
~$ sudo cp btcpay.service /etc/systemd/system
~$ sudo systemctl enable --now btcpay
`

👍 Check

`bash
~$ sudo journalctl -xe --unit btcpay --follow
-- The start-up result is RESULT.
May 23 20:01:25 btc run.sh[10263]: info: Configuration: Data Directory: /home/admin/.btcpayserver/Main
May 23 20:01:25 btc run.sh[10263]: info: Configuration: Configuration File: /etc/btcpay/btcpay.config
May 23 20:01:25 btc run.sh[10263]: info: Configuration: Network: Mainnet
`

If it doesn’t start correctly stop the service and run the application directly to get any error messages.

`bash
~$ sudo systemctl stop btcpay
~$ cd ~; pushd ~/src/btcpayserver; ./run.sh --conf=/etc/btcpay/btcpay.config; popd;
`

An example of checking information in the database.

`bash
~$ sudo -u postgres psql
postgres=# \connect btcpay;
btcpay=# \dt
btcpay=# select * from "Invoices";
btcpay=# \q
`

Attempting to open your BTCPay Server domain in a browser now should show the “Welcome to your BTCPay Server” page. If you are not using a Lightning Node this is the end of the install.

🚨 Update

Updating could break things. Be careful on a live system.

`bash
~$ sudo systemctl stop btcpay
~$ cd ~; pushd ~/src/btcpayserver; git pull; ./build.sh; popd;
~$ sudo systemctl start btcpay
`

Lightning Network Daemon (lnd)

🚚 Install

Full [instructions](https://github.com/lightningnetwork/lnd/blob/master/docs/INSTALL.md).

1. Install Go

```bash
~$ sudo apt install make
~$ wget https://dl.google.com/go/go1.13.linux-amd64.tar.gz
~$ sha256sum go1.13.linux-amd64.tar.gz
68a2297eb099d1a76097905a2ce334e3155004ec08cdea85f24527be3c48e856  go1.13.linux-amd64.tar.gz
~$ sudo tar -C /usr/local -xzf go1.13.linux-amd64.tar.gz
~$ export PATH=$PATH:/usr/local/go/bin
~$ export GOPATH=~/gocode
~$ export PATH=$PATH:$GOPATH/bin
~$ go version
go version go1.13 linux/amd64


```


2. Build and install lnd

`bash
~$ cd ~; mkdir -p src; cd src
~$ git clone https://github.com/lightningnetwork/lnd
~$ cd lnd
~$ make
~$ make install # installs to a directory in $GOPATH/bin
~$ sudo cp $GOPATH/bin/lnd $GOPATH/bin/lncli /usr/bin
~$ lnd --version
lnd version 0.10.99-beta commit=clock/v1.0.0-229-ge64e71d86dc1ac716c30a80f85a22e8fb544697f
`

3. Create a symbolic link to the Bitcoin configuration file.

lnd looks for bitcoin.conf in a specific location to get necessary RPC and zeromq details.

`bash
~$ ln -s ~/.bitcoin/bitcoin.conf /etc/bitcoin/bitcoin.conf
`

4. Create a configuration file.

`bash
~$ vi lnd.conf
`

```
[Application Options]
datadir=/var/lib/lnd/data
tlscertpath=/var/lib/lnd/tls.cert
tlskeypath=/var/lib/lnd/tls.key
logdir=/var/lib/lnd/logs
maxlogfiles=3
maxlogfilesize=10
#externalip=1.1.1.1 # change to your public IP address if required.
alias=i_luv_btcpay
listen=0.0.0.0:9375

[Bitcoin]
bitcoin.active=1
bitcoin.node=bitcoind
bitcoin.mainnet=true

[tor]
tor.active=true
tor.v3=true
```

`bash
~$ sudo mkdir -p /etc/lnd
~$ sudo mkdir -p /var/lib/lnd
~$ sudo chown admin:admin -R /var/lib/lnd
~$ sudo cp lnd.conf /etc/lnd
~$ sudo chmod 644 /etc/lnd/lnd.conf
`

5. Create a systemd service

An example systemd service file is shown below. Adjust the paths, User and Group accordingly.

`bash
~$ vi lnd.service
`

```
[Unit]
Description=LND Lightning Network Daemon
Requires=bitcoind.service
After=bitcoind.service

[Service]
ExecStart=/usr/bin/lnd –configfile=/etc/lnd/lnd.conf
ExecStop=/usr/bin/lncli –lnddir /var/lib/lnd stop
PIDFile= /run/lnd/lnd.pid

User=admin
Group=admin

Type=simple
KillMode=process
TimeoutStartSec=60
TimeoutStopSec=60
Restart=always
RestartSec=60

[Install]
WantedBy=multi-user.target
```

`bash
~$ sudo cp lnd.service /etc/systemd/system
~$ sudo systemctl enable --now lnd
`

✒️ Configuration

Running a Bitcoin Lightning daemon requires a hot wallet on your BTCPay Server.

Repeating for emphasis.

Running a Bitcoin Lightning daemon requires a hot wallet on your BTCPay Server.

With Bitcoin the protocol has evolved and deterministic key derivation means the keys for your wallet can be kept in a different location to the BTCPay Server. Lightning daemons do not have this facility. Any Bitcoins committed or received in your lightning channels are controlled by private keys that are on your BTCPay Server.

1. Create a symbolic link to the lnd data directory

The install steps above use /var/lib/lnd as the data directory rather than the default /home/user/.lnd. In order to save typing when using the lncli client it’s useful to add a symbolic directory link.

`bash
ln -s /var/lib/lnd .lnd
`

2. Create Lightning wallet

The first time the lnd is started a new wallet must be created and the backup seed safely recorded (if someone else gets your seed they can steal your funds so keep it safe).

```bash
~$ lncli create
Input wallet password:
Confirm password:

Do you have an existing cipher seed mnemonic you want to use? (Enter y/n): n

Your cipher seed can optionally be encrypted.
Input your passphrase if you wish to encrypt it (or press enter to proceed without a cipher seed passphrase):

Generating fresh cipher seed…

!!!YOU MUST WRITE DOWN THIS SEED TO BE ABLE TO RESTORE THE WALLET!!!
—————BEGIN LND CIPHER SEED—————


1. above      2. catch    3. start     4. tape
5. sound      6. friend   7. water     8. royal
9. solid     10. poet    11. wisdom   12. match




13. virtual   14. zero    15. slender  16. thrive
17. idle      18. catch   19. robot    20. clay
21. resemble  22. angry   23. work     24. until
—————END LND CIPHER SEED—————–

!!!YOU MUST WRITE DOWN THIS SEED TO BE ABLE TO RESTORE THE WALLET!!!

lnd successfully initialized!
```

Note that if the symbolic directory link from the previous step was not created the command is:

`bash
lncli --lnddir /var/lib/lnd create
`

3. Unlock the wallet

Every time lnd is restarted the wallet needs to be unlocked. This is not ideal for a BTCPay Server that can is designed to run unattended but Lighting is still in its infancy.

`bash
~$ lncli unlock
`

👍 Check

```bash
~$ lncli getinfo
{




“version”: “0.10.99-beta commit=clock/v1.0.0-229-ge64e71d86dc1ac716c30a80f85a22e8fb544697f”,
“commit_hash”: “e64e71d86dc1ac716c30a80f85a22e8fb544697f”,




…




}




```

Check the service:

`bash
~$ sudo journalctl -xe --unit lnd --follow
...
Jul 27 15:46:29 ubuntu lnd[654474]: 2020-07-27 15:46:29.909 [INF] DISC: Attempting to bootstrap with: BOLT-0010 DNS Seed: [[nodes.lightning.directory soa.nodes.lightning.directory] [lseed.bitcoinstats.com]]
Jul 27 15:49:41 ubuntu lnd[654474]: 2020-07-27 15:49:41.939 [INF] DISC: Attempting to bootstrap with: Authenticated Channel Graph
Jul 27 15:49:41 ubuntu lnd[654474]: 2020-07-27 15:49:41.940 [ERR] SRVR: Unable to retrieve initial bootstrap peers: no addresses found
`

The Lightning Node Connection String to use with BTCPay Server is:

`bash
type=lnd-rest;server=https://127.0.0.1:8080/;macaroonfilepath=/home/admin/.lnd/data/chain/bitcoin/mainnet/admin.macaroon;allowinsecure=true
`

👍 Check Tor and LND

As with the Bitcoin daemon if Tor is installed and the configuration file enables it (the one above does) then lnd will automatically register an onion address. In lnd’s case torv3 addresses are supported.

The torv3 onion address below is a lot longer than the torv2 one from the Bitcoin daemon section (16 characters compared to 56 characters).

`bash
~$ lncli getinfo | grep onion
"029b0e3c05595074afcffdca0fb22fb68a95a9c4698dd20962f647de4891eceabd@liyuvwbbycrvvuzcrsd5rq7svwckabejlsymcxiwzkj3smvlwcsqpjyd.onion:9735"
`

The Tor address created by lnd can be used to connect to other Lighting peers on the Tor network. The Tor address can work in parallel with an IPv4 or IPv6 address. To register one of those make sure the externalip is set in the lnd configuration file.

🚨 Update

Updating could break things. Be careful on a live system.

`bash
~$ sudo systemctl stop lnd
~$ export PATH=$PATH:/usr/local/go/bin
~$ export GOPATH=~/gocode
~$ export PATH=$PATH:$GOPATH/bin
~$ cd ~/src/lnd
~$ git pull
~$ make
~$ make install # installs to a directory in $GOPATH/bin
~$ sudo cp $GOPATH/bin/lnd $GOPATH/bin/lncli /usr/bin
~$ lnd --version
lnd version 0.10.99-beta commit=clock/v1.0.0-229-ge64e71d86dc1ac716c30a80f85a22e8fb544697f
~$ sudo systemctl start lnd
`

After the daemon has been restarted the wallet needs to be unlocked:

`bash
~$ lncli unlock
`

If Ride The Lightning (RTL) is installed, see next section, it may have stopped when lnd disappeared so it will also need to be restarted.

`bash
~$ sudo systemctl start rtl
`

Ride The Lightning (RTL)

Ride the Lightning is a Node.js application to manage your Lightning peers, channels, wallet etc.

The advantage of the work that has gone into BTCPay Server is that the RTL web page can be controlled and accessed in the same manner as the BTCPay site.

🚚 Install

1. Install dependencies

`bash
~$ sudo apt install nodejs build-essential npm
`

2. Build RTL

`bash
~$ cd ~/src
~$ git clone https://github.com/Ride-The-Lightning/RTL.git
~$ cd RTL
~$ npm install --only=prod
`

3. Create a configuration file

Copy the sample config file from sample-RTL-Config.json and adjust accordingly. An example that works with the rest of the instructions in this document is shown below.

`bash
~$ cp src/RTL/sample-RTL-Config.json RTL-Config.json
~$ vi RTL-Config.json
`

```json
{


“port”: “3000”,
“defaultNodeIndex”: 1,
“SSO”: {


“rtlSSO”: 1,
“rtlCookiePath”: “/var/lib/rtl/.cookie”,  # Needs to match the value in BTCPay systemd settings.
“logoutRedirectLink”: “https://mainnet.demo.btcpayserver.org/Account/login”




},
“nodes”: [



	{
	“index”: 1,
“lnNode”: “Node 1”,
“lnImplementation”: “LND”,
“Authentication”: {


“macaroonPath”: “/var/lib/lnd/data/chain/bitcoin/mainnet”,
“configPath”: “/etc/lnd/lnd.conf”




},
“Settings”: {


“userPersona”: “MERCHANT”,
“themeMode”: “DAY”,
“themeColor”: “PURPLE”,
“channelBackupPath”: “/home/admin/rtl/backup/node-1”,
“enableLogging”: false,
“lnServerUrl”: “https://localhost:8080/v1”,
“swapServerUrl”: “http://localhost:8081/v1”,
“fiatConversion”: false




}





}




]






}

Note that RTL has different behaviour and requirements compared to the other services documented in theses instructions, specifically:


	The configuration file needs to exist in RTL’s data directory,


	The RTL process may write update to the configuration file.




`bash
~$ sudo mkdir -p /var/lib/rtl
~$ sudo cp ~/RTL-Config.json /var/lib/rtl
~$ sudo chown admin:admin -R /var/lib/rtl
~$ sudo chmod 644 /var/lib/rtl/RTL-Config.json
`

##### 4. Create a systemd service

`bash
~$ vi rtl.service
`

```
[Unit]
Description=Ride The Lightning
Requires=lnd.service
After=lnd.service

[Service]
Environment=”RTL_CONFIG_PATH=/var/lib/rtl”
WorkingDirectory=/var/lib/rtl
ExecStart=/usr/bin/node /home/admin/src/RTL/rtl
User=admin
Group=admin
Type=simple
PIDFile=/run/rtl/rtl.pid
Restart=on-failure

[Install]
WantedBy=multi-user.target
```

`bash
~$ sudo cp rtl.service /etc/systemd/system
~$ sudo systemctl enable --now rtl
`

##### 👍 Check

Check the service:

`bash
~$ sudo journalctl -xe --unit rtl --follow
...
Jul 27 18:27:52 ubuntu node[988638]: Server is up and running, please open the UI at http://localhost:3000
`

If it doesn’t start correctly stop the service and run the application directly to get any error messages.

`bash
~$ sudo systemctl stop rtl
~$ export RTL_CONFIG_PATH=/var/lib/rtl; pushd ~/src/RTL; node rtl; popd;
Server is up and running, please open the UI at http://localhost:3000
`

From the BTCPay Server web page the RTL interface should be accessible from Server Settings->Services under the “Crypto services exposed by your server” heading.

##### 🚨 Update

Updating could break things. Be careful on a live system.

`bash
~$ sudo systemctl stop rtl
~$ cd ~; pushd ~/src/RTL; git pull; npm install; popd;
~$ sudo systemctl start rtl
`

## 🏁 The End




            

          

      

      

    

  

    
      
          
            
  # Choosing a Deployment Method

There are several different deployment methods available, all using the same BTCPay Server software. Because BTCPay is a free and open-source cryptocurrency payment processor, we support diversity in deployment methods for users. Different solutions work best for [different use cases](../UseCase.md).

Business deployment methods can vary by setup, maintenance, support, price, etc. You can run BTCPay as a self-hosted solution on your own server, or use a third-party host. The self-hosted solution allows you not only to attach an unlimited number of stores and use the [Lightning Network](../LightningNetwork.md) but also become a payment processor for others.

BTCPay is a non-custodial invoicing system which eliminates the involvement of a third-party when managing funds. Payments with BTCPay go directly to your wallet. Your private keys are never uploaded to the server. Meaning 3rd Party BTCPay hosts do not control user funds, they are simply hosting your instance of the BTCPay software for you.

:::danger
Manual deployments and Hardware builds are not recommended for production environments and require the user to have technical knowledge related to the build.
::

![Decision diagram](../img//infographics/DecisionDiagInstallBTCPayServer.png "BTCPay Server Infographic")





## To choose one that will best suit your needs, consider the following:<br>

|Deployment method     |   Difficulty   |    Production/Dev |      All features <br>available     |             Approx. cost<br> per month      |
|:-------------------------------------- |:--------------:|:———————-:|:---------------:|:————-:|
|**Lunanode**<br>[1-click install](./LunaNode.md)     |Easy          |Production| Yes| $10
|**Third-Party Hosts**<br>[What is this ?](./ThirdPartyHosting.md)        |Easy     |Production| Host: Yes<br>**Hostee:** No| Free or Paid hosting,<br>depending on provider.
|**Hardware & Cloud As A Service:**<br>- [Lightning in a Box](https://lightninginabox.co/)<br>- [Nodl.it](https://www.nodl.it/)<br>- [Nodl.cloud](https://nodl.cloud/)<br>- [Voltage.cloud](https://voltage.cloud/)   |Easy to Moderate   |Production| Yes| Varies on provider
|**Virtual Private Server:** <br>OpenVZ not supported<br>- [LunaNode](https://medium.com/@BtcpayServer/hosting-btcpayserver-on-lunanode-bf9ef5fff75b)<br>- [Microsoft Azure](./Azure.md)<br>- [Digital Ocean](https://medium.com/@molthoff/running-btcpay-on-digital-ocean-for-10-month-how-to-add-other-coins-7a497339fb2f)<br>- [Amazon AWS EC2](https://wiki.ion.radar.tech/tutorials/nodes/btcpay-+-aws-ec2)<br>- [Google Cloud](./GoogleCloud.md)<br>- Other VPS <br> ([minimal requirements](../FAQ/Deployment.md#what-are-the-minimal-requirements-for-btcpay))           |Moderate to Hard             |Production| Yes| $10-70<br>depending on provider
|**Manual Deployment:**<br>- [Install From Command Line](http://blog.sipsorcery.com/?p=1052)<br>- [Build Without Docker Image](./ManualDeployment.md)       |Very hard       |Development| Yes| Components + Electricity
|**Hardware build:**<br>- [ARM32v7](https://hub.docker.com/r/btcpayserver/btcpayserver/tags/)<br>- [Raspberry Pi](./RaspberryPi.md)<br>- [BTCPayBox](./Hardware.md)      |Very hard         |Development| Yes|  Components + Electricity

Notes:*<br>
*- VPS providers that use OpenVZ are not supported.*<br>
*- [Fast Sync](https://github.com/btcpayserver/btcpayserver-docker/tree/master/contrib/FastSync) can be used to accelerate the initial setup sync time for most deployments.



            

          

      

      

    

  

    
      
          
            
  # Raspberry Pi 3 Deployment

This document guides you step by step on how to run BTCPay Server on a Raspberry Pi 3. See here the [Raspberry Pi 4 instructions](./RPi4.md)

The overall process is as follows:


	Purchase and assemble hardware


	Install Raspbian Lite operating system, configure networking


	Install BTCPayServer-Docker




BTCPayServer can be successfully installed on the following hardware:


	Raspberry Pi 3 Model B+<br/>




![Raspberry Pi 3 Model B+](https://www.raspberrypi.org/app/uploads/2018/03/770A5842-462x322.jpg “Raspberry Pi 3 Model B+”)

2. 64GB SanDisk Ultra Fit USB Flash Drive<br/>
![64 GB SanDisk Ultra Fit USB Flash Drive](https://drh1.img.digitalriver.com/DRHM/Storefront/Company/sandiskus/images/product/detail/SDCZ430-210.png “SanDisk Ultra Fit USB 3.1 Flash Drive”)

3. 16 GB SanDisk Ultra MicroSDXC Card<br/>
![16 GB SanDisk Ultra MicroSDXC Card](https://drh2.img.digitalriver.com/DRHM/Storefront/Company/sandiskus/images/product/detail/ultra-microsd-16gb-sandisk-210x210.png “16 GB SanDisk Ultra MicroSDXC Card”)

Other requirements are as follows:


	Internet connection


	Static IP


	Domain Name


	Ability to open ports 80, 443, 9735 on your router




Once you have the hardware and other requirements, you’re ready to begin!

## Here are the setup instructions:

Step 1 - Configure your domain name.

Login to your domain registrar and create an A record pointing your domain to the external IP address of your Pi’s internet connection:


	IP Address: Visit [ipchicken.com](https://ipchicken.com) or search the web for “what’s my ip” from any device on the network


	Domain / Hostname: btcpay.YourDomain.com. Name the subdomain where BTCPayServer will run (e.g. btcpay).


	TTL: Shortest, or Default




It can take several hours for DNS changes to propagate worldwide, so you should do this step first.

Step 2 - Assemble your Pi.

Step 3 - Get on a computer with a microSD card slot, or a USB port if you have a [USB-microSD adapter](https://www.canakit.com/mini-micro-sd-usb-reader.html). Download and extract [Raspbian Buster Lite](https://downloads.raspberrypi.org/raspbian_lite_latest) to this machine.

Step 4 - On this same computer, download and install [Etcher](https://etcher.io/). Etcher is used to ‘flash’ Operating System disk images to SD cards and USB drives. ⚠️ ‘Flashing’ a drive wipes it completely; be careful.

In this case, we will be using Etcher to flash your microSD card with the downloaded Raspbian Lite OS. Plug in the microSD card, and run Etcher. Select the unzipped Raspbian OS, select your microSD card, and confirm to flash it.

Step 5 - On this same computer, ⚠️ before you plug the SD card into your Pi, create an empty file named ssh in the boot partition of the SD card.


	On Mac and Linux, use touch ssh in the card’s root directory via Terminal


	On Windows, use type nul > ssh in the card’s root directory via cmd




Step 6 - Insert your microSD card and flash drive into the Pi; connect the network cable and power supply.

Step 7 - From another computer, use an SSH client (ssh on Mac and Linux, [PuTTY](https://putty.org) on Windows) to connect to your Raspberry Pi:


	hostname: raspberrypi.local


	username: pi


	password: raspberry




So: ssh pi@raspberrypi.local.

If raspberrypi.local doesn’t work, you will have to either look up the Pi’s IP address on your router, or run ifconfig on the Pi directly for the eth0 inet address.

Step 8 - ⚠️ IMPORTANT! - Change your password:

`bash
passwd
`

Step 9 - Give your Pi a static IP address and a DHCP reservation on your local network, via your router. Optionally, setup WiFi. There are a few different ways to do this and you will find a ton of articles online.

To get your router’s IP:


	On Linux: ip route | grep default


	On Mac: netstat -nr | grep default


	On Windows: ipconfig | findstr /i “Gateway”




Step 10 - Log into your router and forward ports 80, 443, and 9735 to your Pi’s local IP address. Every router is different and you should be able to find instructions for your router by searching the web for “Port Forwarding + {your router make and model}”.

Step 11 - Install fail2ban and git.

fail2ban bans IPs that attempt to connect to your server and show malicious signs. git allows you to clone and manage repositories on github.com.

So, open a new terminal window and type the following command:

`bash
sudo apt update && sudo apt install -y fail2ban git
`

⚠️ Note for beginners: Run all commands in these instructions one line at a time!

Step 12 - Install ufw (Uncomplicated Firewall) and allow only specific ports. UFW is a user-friendly frontend for managing iptables firewall rules and its main goal is to make managing iptables easier, or as the name says: uncomplicated.

Install UFW:

`bash
sudo apt install ufw
`

This command allows SSH connections from internal networks only:

`bash
sudo ufw allow from 10.0.0.0/8 to any port 22 proto tcp
sudo ufw allow from 172.16.0.0/12 to any port 22 proto tcp
sudo ufw allow from 192.168.0.0/16 to any port 22 proto tcp
sudo ufw allow from 169.254.0.0/16 to any port 22 proto tcp
sudo ufw allow from fc00::/7 to any port 22 proto tcp
sudo ufw allow from fe80::/10 to any port 22 proto tcp
sudo ufw allow from ff00::/8 to any port 22 proto tcp
`

These ports need to be accessible from anywhere (The default subnet is ‘any’ unless you specify one):

`bash
sudo ufw allow 80
sudo ufw allow 443
sudo ufw allow 9735
`

Verify your configuration:

`bash
sudo ufw status
`

Enable your firewall:

`bash
sudo ufw enable
`

Step 13 - Reformat flash drive, to be configured as swap space.

⚠️ Warning: Using any SD card for swap space kills it quickly!. Instead, use a flash drive, as the instructions discuss.

The command sudo fdisk -l shows a list of the connected storage devices. Assuming you only have one flash drive connected, it will be
called /dev/sda. Double-check that /dev/sda exists, and that its storage capacity matches your flash memory.

Delete existing flash drive partition:

`bash
sudo fdisk /dev/sda
# Press 'd'
# Press 'w'
`

Create new primary flash drive partition:

`bash
sudo fdisk /dev/sda
# Press 'n'
# Press 'p'
# Press '1'
# Press 'enter'
# Press 'enter'
# Press 'w'
`

Format partition as ext4:

`bash
sudo mkfs.ext4 /dev/sda1
# Create folder for mount.
sudo mkdir /mnt/usb
# Look up UUID of flash drive.
UUID="$(sudo blkid -s UUID -o value /dev/sda1)"
# Add mount to fstab.
echo "UUID=$UUID /mnt/usb ext4 defaults,nofail 0" | sudo tee -a /etc/fstab
`

Test changes to fstab file:

`bash
sudo mount -a
`

Verify that drive is mounted:

`bash
df -h
`

/dev/sda1 should appear as mounted on /mnt/usb.

Create symlink to flash drive for Docker:

`bash
sudo mkdir /mnt/usb/docker
sudo ln -s /mnt/usb/docker /var/lib/docker
`

Step 14 - Finally, move Swapfile to USB and increase its size.

Edit its configuration file:

`bash
sudo nano /etc/dphys-swapfile
`

Change the CONF_SWAPFILE line to:
CONF_SWAPFILE=/mnt/usb/swapfile

Change the CONF_SWAPSIZE line to:
CONF_SWAPSIZE=2048

Stop and restart the swapfile service:

`bash
sudo /etc/init.d/dphys-swapfile stop
sudo /etc/init.d/dphys-swapfile start
`

Step 15 - Install BTCPayServer!

Login as root:

`bash
sudo su -
`

Create a folder for BTCPayServer:

`bash
mkdir btcpayserver
cd btcpayserver
`

Clone the BTCPayServer-Docker repository into the folder:

`bash
git clone https://github.com/btcpayserver/btcpayserver-docker
cd btcpayserver-docker
`

Set your environment variables. Make sure the BTCPAY_HOST value uses your own domain & subdomain. As usual, run each command separately:

`bash
export BTCPAY_HOST="btcpay.YourDomain.com"
export NBITCOIN_NETWORK="mainnet"
export BTCPAYGEN_CRYPTO1="btc"
export BTCPAYGEN_REVERSEPROXY="nginx"
export BTCPAYGEN_LIGHTNING="lnd"
export BTCPAYGEN_ADDITIONAL_FRAGMENTS="opt-save-storage-xs;opt-save-memory"
export BTCPAY_ENABLE_SSH=true
`

Adding the opt-save-storage-xs fragment will tell Bitcoin Core to keep around 3 months of blocks, or 25 GB of disk space. See other pruning levels [here](https://docs.btcpayserver.org/Docker/#generated-docker-compose). Pruning is necessary for FastSync to work.

If you want to use multiple hostnames, add them via the optional BTCPAY_ADDITIONAL_HOSTS variable:

`bash
export BTCPAY_ADDITIONAL_HOSTS="raspberrypi.local,btcpay.local"
`

In case you want to restrict access to your local network only, please note that you need to use a .local domain.

Finally, run the BTCPayServer setup script:

`bash
. ./btcpay-setup.sh -i
exit
`

Step 16 - Go to https://btcpay.YourDomain.com and confirm that your site is up and your nodes are syncing.

Syncing is very slow on a Pi, since each block and transaction needs to go through validation. You can skip this, at your own risk, by using [FastSync](#fast-sync). Otherwise, simply leave the node running to sync to 100%; this may take weeks.

Setup Complete!

## Fast Sync

BTCPayServer’s complete FastSync documentation is [available here](https://github.com/btcpayserver/btcpayserver-docker/tree/master/contrib/FastSync).

Please read very carefully to understand what FastSync is and why it’s important to verify the UTXO set yourself.

Step 17 - OPTIONAL - FastSync:

```bash
cd /root/btcpayserver/btcpayserver-docker

./btcpay-down.sh
cd contrib
cd FastSync
./load-utxo-set.sh
```

FastSync currently takes about 30 minutes on a high-speed internet connection. After FastSync finishes, run the following command to restart BTCPayServer:

`bash
cd ../..
./btcpay-up.sh
`

## Total Verification

By using FastSync, you are exposing yourself to attacks if a [malicious UTXO Set snapshot](https://github.com/btcpayserver/btcpayserver-docker/blob/master/contrib/FastSync/README.md#what-are-the-downsides-of-fast-sync) is sent to you.

If you have another trusted node somewhere else, you can check the validity of the UTXO Set gathered by FastSync by following [these instructions](https://github.com/btcpayserver/btcpayserver-docker/blob/master/contrib/FastSync/README.md#dont-trust-verify).

## That’s it! Enjoy your BTCPi! 🎉

If you don’t have the time or patience to build your own BTCPi, there are a few merchants who can build one for you:


	[Lightning in a Box](https://lightninginabox.co)


	[Nodl.it](https://nodl.it)






            

          

      

      

    

  

    
      
          
            
  # Raspberry Pi 4 Deployment

This document guides you step by step on how to run BTCPay Server on a Raspberry Pi 4. See here the [Raspberry Pi 3 instructions](./RPi3.md)

The newly released Raspberry Pi 4 is currently the best low-cost single-board computer available. You can use a Raspberry Pi 4 to run your BTCPay Server at home for around $150 worth of parts, described below.

## Required Hardware

### Raspberry Pi 4


	[Raspberry Pi 4 with 4GB RAM](https://www.canakit.com/raspberry-pi-4-4gb.html) ($55)


	[Sandisk 16GB SD Card](https://www.amazon.com/dp/B073K14CVB/) ($5)




Don’t settle for only 1GB or 2GB of RAM. The 4GB RAM version is harder to find than the other versions, but you absolutely want that 4GB of RAM for a few extra bucks, and it’s totally worth spending a few extra minutes searching on the Internet to find a vendor that has the 4GB RAM version in stock. You’ll also need an SD card reader if you don’t already have one.

### Power Adapters and USB-C Cable


	[Official Raspberry Pi 4 USB-C Power Adapter 5.1V/3A for US](https://shop.pimoroni.com/products/raspberry-pi-official-usb-c-power-supply-us?variant=29391144648787) ($10)


	[Official Raspberry Pi 4 USB-C Power Adapter 5.1V/3A for EU](https://shop.pimoroni.com/products/raspberry-pi-official-usb-c-power-supply-eu?variant=29391130624083) ($10)


	[Official Raspberry Pi 4 USB-C Power Adapter 5.1V/3A for AU](https://shop.pimoroni.com/products/raspberry-pi-official-usb-c-power-supply-au?variant=29391160737875) ($10)




Don’t waste your time with random Chinese power adapters from Amazon, or expect that the existing ones you have at home are going to work fine. The Raspberry Pi 4 has issues with unofficial adapters, and for only $10 it’s better to just get an official adapter instead of learning this the hard way.

### Cooling options: Passive vs Active vs Passive+Active


	[Pimoroni Fan Shim](https://shop.pimoroni.com/products/fan-shim) ($10)




Strictly speaking, you don’t actually need a cooling solution, but you certainly want a cooling solution, because once the Raspberry PI core temperature reaches 70C, it will throttle the CPU down to avoid burning itself up.

### Case options: Naked vs. Protection


	[Flirc Heatsink Case](https://flirc.tv/more/raspberry-pi-4-case) ($12)


	[Pimoroni Pibow Coupé 4](https://shop.pimoroni.com/products/pibow-coupe-4?variant=29210100105299) ($9)




Of course, using a case is totally optional, but we recommend one to protect your Raspberry Pi over the long-term and prevent random dust from shorting out the pins.

### Data storage options: SSD vs USB memory vs SD card


	[Samsung 500GB SSD](https://www.amazon.com/dp/B073GZBT36/) ($75)




The 500GB SSD allows you to keep a full copy of the Bitcoin blockchain, until it grows past 500GB sometime in 2022. At that time, you’ll either have to enable pruning on your Bitcoin node, or upgrade to a 1TB SSD, which will presumably be cheaper then, probably even less than $75. You can also use BTCPay without a full copy of the Bitcoin blockchain.

### Display options: Display or Headless


	Display ($100)




## Assembling the Raspberry Pi 4 components


	Important: Attach a heatsink to the CPU! 🔥🔥🔥


	Connect the SSD to one of the blue colored USB 3 ports


	Prepare the USB Power Adapter but don’t plug it in yet




![RPI4 Components](../img//RPI4Components.jpeg “Raspberry Pi 4 Components”)

## Install Linux on the Raspberry Pi

Start by downloading [Raspberry Pi OS for Linux](https://www.raspberrypi.org/software/operating-systems/) to your existing computer. The “Lite” distribution is fine for BTCPay setup, but if you want to use your Raspberry Pi for other things, you might want the full image.

![RPI4 Linux Installation](../img//RPI4Linux.png “Raspberry Pi 4 Linux Installation”)

### Flash your SD card with the Raspberry Pi OS for Linux


	Extract the downloaded Raspberry Pi OS for Linux zip file


	Download the latest version of [balenaEtcher](https://www.balena.io/etcher/) and install it.


	Connect an SD card reader with the SD card inside.


	Open balenaEtcher and select from your hard drive the Raspberry Pi .img from the extracted zip file you wish to write to the SD card.


	Select the SD card you wish to write your image to.


	Review your selections and click ‘Flash!’ to begin writing data to the SD card.




You can find a more in-depth instruction guide to flashing to your SD card at the [official Raspberry Pi  website](https://www.raspberrypi.org/documentation/installation/installing-images).

If you used balenaEtcher to flash, the SD card will already have been ejected. Simply take the SD card out and put it back in. The SD card should now be labelled as boot. Next, enable SSH at bootup so you can remotely login by creating an empty file in the SD card root folder called ssh. Eject the SD card through your OS before taking it out of the SD card reader.

![RPI4 Console](../img//RPI4Terminal4.png “Raspberry Pi 4 Console”)

## Booting up the Raspberry Pi

After inserting the SD card into the Raspberry Pi, go ahead and connect the power and ethernet, and optionally the display and keyboard if you have those. It should boot up and get an IP address using DHCP. You can try searching for it with ping raspberrypi.local on your desktop PC, but if that doesn’t work you will need to login to your router to find its IP address.

The IP address that my Raspberry Pi got was 192.168.1.5 so I SSH’d to that:

`bash
ssh 192.168.1.5 -l pi
`

The default password for the “pi” user is “raspberry”. After SSH’ing in, the first thing I want to do is check the device’s CPU temperature to make sure the cooling system are working correctly. Press Ctrl-c to stop monitoring:

`bash
sudo watch -n1 vcgencmd measure_temp
`

Next, let’s change the password for the “pi” user:

`bash
passwd pi
`

![RPI4 Console](../img//RPI4Terminal4.png “Raspberry Pi 4 Console”)

After that, switch to the root user, which we will use for the remaining part of the tutorial:

`bash
sudo su -
`

## Configuring the storage

We recommend to disable swap to prevent burning out your SD card:

`bash
dphys-swapfile swapoff
dphys-swapfile uninstall
update-rc.d dphys-swapfile remove
systemctl disable dphys-swapfile
`

![RPI4 Console](../img//RPI4Terminal5.png “Raspberry Pi 4 Console”)

Partition your SSD:

`bash
fdisk /dev/sda
# type 'p' to list existing partitions
# type 'd' to delete currently selected partitions
# type 'n' to create a new partition
# type 'w' to write the new partition table and exit fdisk
`

Format the new partition on your SSD:

`bash
mkfs.ext4 /dev/sda1
`

Configure the SSD partition to auto-mount at bootup:

`bash
mkfs.ext4 /dev/sda1
mkdir /mnt/usb
UUID="$(sudo blkid -s UUID -o value /dev/sda1)"
echo "UUID=$UUID /mnt/usb ext4 defaults,noatime,nofail 0 0" | sudo tee -a /etc/fstab
mount -a
`

While you’re editing /etc/fstab add a RAM filesystem for logs (optional).
This is also to prevent burning out your SD card too quickly:

`bash
echo 'none /var/log tmpfs size=10M,noatime 0 0' >> /etc/fstab
`

Mount the SSD partition and create a symlink for docker to use the SSD:

`bash
mkdir /mnt/usb/docker
ln -s /mnt/usb/docker /var/lib/docker
`

## Configuring the firewall

Upgrade your OS packages to latest:

`bash
apt update && apt upgrade -y && apt autoremove
`

Install a firewall and allow SSH, HTTP, HTTPS, Bitcoin, and Lightning:

`bash
apt install -y ufw
ufw default deny incoming
ufw default allow outgoing
`

UFW needs default iptables changes and a reboot for the firewall to work:

`bash
update-alternatives --set iptables /usr/sbin/iptables-legacy
reboot
`

Switch back to root after rebooting:

`bash
sudo su -
`

This command allows SSH connections from internal networks only:

`bash
ufw allow from 10.0.0.0/8 to any port 22 proto tcp
ufw allow from 172.16.0.0/12 to any port 22 proto tcp
ufw allow from 192.168.0.0/16 to any port 22 proto tcp
ufw allow from 169.254.0.0/16 to any port 22 proto tcp
ufw allow from fc00::/7 to any port 22 proto tcp
ufw allow from fe80::/10 to any port 22 proto tcp
ufw allow from ff00::/8 to any port 22 proto tcp
`

These ports need to be accessible from anywhere (The default subnet is ‘any’ unless you specify one):

`bash
ufw allow 80/tcp
ufw allow 443/tcp
ufw allow 8333/tcp
ufw allow 9735/tcp
`

Enable your firewall:

`bash
ufw enable
`

Verify your configuration:

`bash
ufw status
`

## Setup BTCPay Server

Download BTCPay Server from GitHub:

`bash
cd # ensure we are in root home
apt install -y fail2ban git
git clone https://github.com/btcpayserver/btcpayserver-docker
cd btcpayserver-docker
`

Configure BTCPay by setting some [environment variables](https://github.com/btcpayserver/btcpayserver-docker#environment-variables):

`bash
export BTCPAY_HOST="raspberrypi.local"
export REVERSEPROXY_DEFAULT_HOST="$BTCPAY_HOST"
export NBITCOIN_NETWORK="mainnet"
export BTCPAYGEN_CRYPTO1="btc"
export BTCPAYGEN_LIGHTNING="lnd"
export BTCPAYGEN_REVERSEPROXY="nginx"
export BTCPAYGEN_ADDITIONAL_FRAGMENTS="opt-more-memory"
export BTCPAY_ENABLE_SSH=true
`

If you want to use multiple hostnames, add them via the optional BTCPAY_ADDITIONAL_HOSTS variable:

`bash
export BTCPAY_ADDITIONAL_HOSTS="btcpay.YourDomain.com,btcpay.local"
`

In case you want to restrict access to your local network only, please note that you need to use a .local domain.

Run the BTCPay installation:

`bash
. ./btcpay-setup.sh -i
`

It should be up and running within a few minutes. Try opening http://raspberrypi.local in your web browser. If everything is correct, you will see BTCPay Server front page.

Now, you just need to wait a day or so for the Bitcoin blockchain to [sync and full verify](../FAQ/Synchronization.md). The bottom of the BTCPay Server web GUI will show a pop-up dialog box to monitor the progress.



            

          

      

      

    

  

    
      
          
            
  # Raspberry Pi Deployment

For your Bitcoin experience to be truly self-sovereign and trustless, you should run nodes on your own hardware and internet connection. Raspberry Pi, a low-cost single-board computer which allows you to achieve just that.

Here’s a list of Raspberry Pi deployment documentation. Click on a link below to visit step by step tutorials.


	[Run BTCPay Server on Raspberry Pi 3](./RPi3.md)


	[Run BTCPay Server on Raspberry Pi 4](./RPi4.md)






            

          

      

      

    

  

    
      
          
            
  # Reverse proxy to Tor

## Advantages


	no port forwarding needed on the LAN of the host


	encrypted connection


	hides the IP of the host




## Requirements


	a Virtual Private Server (VPS) - eg. a minimal package on Lunanode for ~3.5$/month


	root access on the VPS - you need to set up webserver and install packages


	a domain or subdomain - this will be setup on the proxy webserver




Get the Tor .onion address of your BTCPay Server via the Server settings > Services page.
See information in the “HTTP-based TOR hidden services” section.

Note: There is also a [Docker version](#do-all-this-in-a-docker-container) of this setup.

## VPS Setup

You will create a nginx reverse proxy and a socat service, which forwards requests to your BTCPay Server.

Login as root and install the required dependencies: (example assumes a Debian based system)

```bash
switch to root user (if not logged in as root)
sudo su -

install dependencies
apt update
apt install -y certbot nginx socat tor
```

### Socat setup

Create the service file /etc/systemd/system/http-to-socks-proxy@.service:

```ini
[Unit]
Description=HTTP-to-SOCKS proxy
After=network.target

[Service]
EnvironmentFile=/etc/http-to-socks-proxy/%i.conf
ExecStart=/usr/bin/socat tcp4-LISTEN:${LOCAL_PORT},reuseaddr,fork,keepalive,bind=127.0.0.1 SOCKS4A:${PROXY_HOST}:${REMOTE_HOST}:${REMOTE_PORT},socksport=${PROXY_PORT}

[Install]
WantedBy=multi-user.target
```

Create the configuration for the service in /etc/http-to-socks-proxy/btcpayserver.conf:

```bash
create the directory
mkdir -p /etc/http-to-socks-proxy/

create the file with the content below
nano /etc/http-to-socks-proxy/btcpayserver.conf
```

Replace the REMOTE_HOST and adapt the ports if needed:

`conf
PROXY_HOST=127.0.0.1
PROXY_PORT=9050
LOCAL_PORT=9081
REMOTE_HOST=heregoesthebtcpayserverhiddenserviceaddress.onion
REMOTE_PORT=80
`

Create a symlink in /etc/systemd/system/multi-user.target.wants to enable the service and start it:

```bash
enable
ln -s /etc/systemd/system/http-to-socks-proxy@.service /etc/systemd/system/multi-user.target.wants/http-to-socks-proxy@btcpayserver.service

start
systemctl start http-to-socks-proxy@btcpayserver

check service status
systemctl status http-to-socks-proxy@btcpayserver

check if tunnel is active
netstat -tulpn | grep socat
should give something like this:
tcp 0 0 127.0.0.1:9081 0.0.0.0:* LISTEN 951/socat
```

### Webserver setup

#### Point domain to the VPS

Create the A record on the DNS server of your domain/subdomain and point it to your VPS IP address.

#### Prepare SSL and Let’s Encrypt

```bash
generate 4096 bit DH params to strengthen the security, may take a while
openssl dhparam -out /etc/ssl/certs/dhparam.pem 4096

create directory for Let’s Encrypt files
mkdir -p /var/lib/letsencrypt/.well-known
chgrp www-data /var/lib/letsencrypt
chmod g+s /var/lib/letsencrypt
```

#### nginx configuration: http

Create a variable mapping to forward the correct protocol setting and check if the Upgrade header is sent by the client, e.g. /etc/nginx/conf.d/map.conf:

```nginx
map $http_x_forwarded_proto $proxy_x_forwarded_proto {

default $http_x_forwarded_proto;
‘’ $scheme;

}

	map $http_upgrade $connection_upgrade {
	default upgrade;
‘’ close;

}

Create a config file for the domain, e.g. /etc/nginx/sites-available/btcpayserver.conf:

```nginx
server {


listen 80;
server_name mydomain.com;

# Let’s Encrypt verification requests
location ^~ /.well-known/acme-challenge/ {


allow all;
root /var/lib/letsencrypt/;
default_type “text/plain”;
try_files $uri =404;




}

# Redirect everything else to https
location / {


return 301 https://$server_name$request_uri;




}






}

We will configure the https server part in the same config file once we obtained the SSL certificate.

Enable the web server config by creating a symlink and restarting nginx:

```bash
ln -s /etc/nginx/sites-available/btcpayserver.conf /etc/nginx/sites-enabled/btcpayserver.conf

systemctl restart nginx
```

#### Obtain SSL certificate via Let’s Encrypt

Run the following command with adapted email and domain parameters:

`bash
certbot certonly --agree-tos --email admin@mydomain.com --webroot -w /var/lib/letsencrypt/ -d mydomain.com
`

#### nginx configuration: https

Now that we have a valid SSL certificate, add the https server part at the end of /etc/nginx/sites-available/btcpayserver.conf:

```nginx
server {

listen 443 ssl http2;
server_name mydomain.com;

SSL settings
ssl on;
ssl_stapling on;
ssl_stapling_verify on;

ssl_session_timeout 1d;
ssl_session_cache shared:SSL:10m;
ssl_session_tickets off;

Update this with the path of your certificate files
ssl_certificate /etc/letsencrypt/live/mydomain.com/fullchain.pem;
ssl_certificate_key /etc/letsencrypt/live/mydomain.com/privkey.pem;

ssl_dhparam /etc/ssl/certs/dhparam.pem;
ssl_protocols TLSv1.2 TLSv1.3;
ssl_ciphers ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-POLY1305:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384;
ssl_prefer_server_ciphers off;

resolver 8.8.8.8 8.8.4.4 valid=300s;
resolver_timeout 30s;

add_header Strict-Transport-Security “max-age=63072000” always;
add_header Content-Security-Policy “frame-ancestors ‘self’;”;
add_header X-Content-Type-Options nosniff;

Proxy requests to the socat service
location / {

proxy_pass http://127.0.0.1:9081/;
proxy_http_version 1.1;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $remote_addr;
proxy_set_header X-Forwarded-Proto $proxy_x_forwarded_proto;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection $connection_upgrade;

}

}

Restart nginx once more:

`bash
systemctl restart nginx
`

Now, visiting mydomain.com should show your BTCPay Server instance.

Do all this in a Docker container

Ready made [Docker image](https://hub.docker.com/r/cloudgenius/socator) ([Code](https://github.com/beacloudgenius/socator))

SocaTor = SOCAT + TOR
Based on [Docker-Socator](https://github.com/Arno0x/Docker-Socator)

It uses socat to listen on a given TCP port (5000 in this example) and to redirect incoming traffic to a Tor hidden service specified through environment variables. It acts as a relay between the standard web and a hidden service on the Tor network. You can optionally restrict the IP addresses that are allowed to connect to this service by specifying an ALLOWED_RANGE environment variable and using CIDR notation.

Please note:

This container does not have any nginx component because Kubernetes provides for it.
Usage

Break free from cloud services providers limitations, secure and protect your bitcoin full node, connect that with a BTC Pay server, all behind TOR.
Selectively expose the BTCPay Server payment gateway and API to clearnet using socat+tor running on the Internet.

build

`sh
docker build -t cloudgenius/socator .
`

push

`sh
docker push cloudgenius/socator
`

Start the image in background (daemon mode) with IP address restriction:

```sh
docker run -d 


-p 5000:5000 -e “ALLOWED_RANGE=192.168.1.0/24” -e “TOR_SITE=zqktlwiuavvvqqt4ybvgvi7tyo4hjl5xgfuvpdf6otjiycgwqbym2qad.onion” -e “TOR_SITE_PORT=80” –name socator cloudgenius/socator




```

Start the image in foreground:

```sh
docker run –rm -ti 


-p 5000:5000 -e “TOR_SITE=zqktlwiuavvvqqt4ybvgvi7tyo4hjl5xgfuvpdf6otjiycgwqbym2qad.onion” -e “TOR_SITE_PORT=80” –name socator cloudgenius/socator




```

Now http://localhost:5000 should show you the tor hidden service you specified in the above command.

Use that Docker container in a Kubernetes Cluster using these manifests

These manifest assumes a typical Kubernetes cluster that exposes internal services (like socator running internallly at port 5000) to the clearnet/public internet via Nginx Ingress https://github.com/kubernetes/ingress-nginx and provide automated Let’s Encrypt TLS/SSL certificates via https://github.com/jetstack/cert-manager.

Deployment manifest

```yaml
—
apiVersion: apps/v1
kind: Deployment
metadata:


name: socator





	spec:
	replicas: 1
selector:



	matchLabels:
	role: socator









	template:
	
	metadata:
	
	labels:
	role: socator







	spec:
	containers:
- image: cloudgenius/socator # code https://github.com/beacloudgenius/socator


imagePullPolicy: IfNotPresent
name: socator
env:



	name: TOR_SITE
value: “zqktlwiuavvvqqt4ybvgvi7tyo4hjl5xgfuvpdf6otjiycgwqbym2qad.onion” # BTCPay Server Tor address => docker exec tor cat /var/lib/tor/app-btcpay-server/hostname


	name: TOR_SITE_PORT
value: “80”






















```

Service manifest

```yaml
—
apiVersion: v1
kind: Service
metadata:


name: socator





	spec:
	
	ports:
	
	name: http
port: 5000






	selector:
	role: socator









```

Ingress manifest

```yaml
—
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:


name: socator
annotations:


kubernetes.io/ingress.class: nginx
cert-manager.io/cluster-issuer: letsencrypt-prod








	spec:
	
	rules:
	
	host: btcpayserver.mydomain.com
http:



	paths:
	
	
	backend:
	
	service:
	name: socator
port:


number: 5000












path: /
pathType: Prefix


















	tls:
	
	
	hosts:
	
	btcpayserver.mydomain.com








secretName: socator-tls













```

Resources

	[nginx reverse proxy to .onion site in Tor network](https://itgala.xyz/nginx-reverse-proxy-to-onion-site-in-tor-network/)

	[Tor-to-IP tunnel service](https://github.com/openoms/bitcoin-tutorials/blob/master/tor2ip_tunnel.md)

	[How to make a nginx reverse proxy direct to tor hidden service](https://stackoverflow.com/questions/55487324/how-to-make-a-nginx-reverse-proxy-direct-to-tor-hidden-service)

	[Secure Nginx with Let’s Encrypt on Debian 10 Linux](https://linuxize.com/post/secure-nginx-with-let-s-encrypt-on-debian-10/)

	[Nginx WebSocket proxying](http://nginx.org/en/docs/http/websocket.html)

 # Forward ports with a reverse SSH tunnel

Advantages

	no port forwarding needed on the LAN of the host

	encrypted connection

	hides the IP of the host

Requirements

	a Virtual Private Server (VPS) - eg. a minimal package on Lunanode for ~3.5$/month

	root access on the VPS - only root can forward ports under no. 1000

	ssh access to the host computer (where the ports will be forwarded from)

Setup

On the host (your BTCPay Server instance)

Check for an ssh public key:

`bash
cat ~/.ssh/*.pub
`

If there is none generate one (keep pressing ENTER):

`bash
ssh-keygen -t rsa -b 4096
`

This will generate the SSH keypair id_rsa (private key) and id_rsa.pub inside ~/.ssh.

The private key needs to get added to the ssh-agent:

```bash
# start the ssh-agent in the background
eval $(ssh-agent -s)

# add private key to ssh-agent
ssh-add ~/.ssh/id_rsa
```

Copy the public key over to the VPS (fill in the VPS_IP_ADDRESS).
You will be prompted for the root password of the VPS.

`bash
ssh-copy-id -i ~/.ssh/id_rsa.pub root@VPS_IP_ADDRESS
`

To verify that it works, SSH into the VPS – this should not prompt for the password anymore:

`bash
ssh root@VPS_IP_ADDRESS
`

On the VPS

You can either reuse the connection from before or login as root.

Edit the sshd config:

`bash
sudo nano /etc/ssh/sshd_config
`

Make sure these entries are active (meaning there is no # at the beggining of the line).
Alternatively, you can just paste these on the end of the file:

`
RSAAuthentication yes
PubkeyAuthentication yes
GatewayPorts yes
AllowTcpForwarding yes
ClientAliveInterval 60
`

CTRL+O, ENTER to save, CTRL+X to exit.

:::warning
You can lose access at this point if the sshd config is wrong. Please double-check!
::

Restart the sshd service:

`bash
sudo systemctl restart sshd
`

Back to the host

Install and set up autossh

Install the autossh dependency:

`bash
sudo apt-get install autossh
`

Create the service file:

`bash
sudo nano /etc/systemd/system/autossh-tunnel.service
`

Paste the following and fill in the VPS_IP_ADDRESS.
Add or remove ports as required.

```ini
[Unit]
Description=AutoSSH tunnel service
After=network.target

[Service]
User=root
Group=root
Environment=”AUTOSSH_GATETIME=0”
ExecStart=/usr/bin/autossh -C -M 0 -v -N -o “ServerAliveInterval=60” -R 9735:localhost:9735 -R 443:localhost:443 -R 80:localhost:80 root@VPS_IP_ADDRESS
StandardOutput=journal

[Install]
WantedBy=multi-user.target
```

Enable and start the service:

`bash
sudo systemctl enable autossh-tunnel
sudo systemctl start autossh-tunnel
`

The port forwarding with a reverse ssh-tunnel is now complete.
You should be able access the ports/services of the host computer through the IP of the VPS.

Monitoring

Check if there are any errors on the host computer:

`bash
sudo journalctl -f -n 20 -u autossh-tunnel
`

To check if tunnel is active on the VPS:

`bash
netstat -tulpn
`

Resources

	Raspiblitz FAQ: [How to setup port-forwarding with a SSH tunnel?](https://github.com/rootzoll/raspiblitz/blob/master/FAQ.md#how-to-setup-port-forwarding-with-a-ssh-tunnel)

	RaspiBolt Docs: [Login with SSH keys](https://stadicus.github.io/RaspiBolt/raspibolt_21_security.html#login-with-ssh-keys)

 # Third-party hosting

A third-party host is an individual or a business which self-hosts a BTCPay Server instance and enables other users to register and use the server. On a self-hosted server, the owner can add an unlimited amount of users and stores and allow those users to manage their stores independently and receive payments to their own wallets.

While this feature in BTCPay Server exists for complex multi-store business management, community enthusiasts use it to help other users (mostly beginners), sometimes skip an overwhelming step of deploying a self-hosted BTCPay server. Users who want to test or develop applications on top of BTCPay Server also use instances hosted by third-parties. Some hosts try to spread the adoption of cryptocurrencies by allowing their local merchants to receive payments for free or for a small sign-up fee.

In layman words, think of this feature as a payment processor factory which allows anyone to deploy a server and help others receive payments which are validated via the server owners’ [full Bitcoin node](https://en.bitcoin.it/wiki/Full_node).

Third-party hosts play an important role in the ecosystem since they provide an easy and cost-effective way for users to try and use BTCPay Server. The role of honest hosts who provide free service to others is essential in the early phase of BTCPay Server adoption. However, users should be familiar with the pros, cons and potential risks involved when using a trusted third-party. Find the optimal balance between your use-case, cost, and privacy/security trade-offs.

Some of the hosts are entirely free to use and maintain the server cost from donations of their users. If you’ve been using a reliable free host for a while, you should consider donating to them to support them.

	[Third-party hosting](#third-party-hosting)
- [Advantages and disadvantages](#advantages-and-disadvantages)

	[Pros](#pros)

	[Cons](#cons)

	[Concerns For Use](#concerns-for-use)
- [Security Concerns](#security-concerns)
- [Privacy Concerns](#privacy-concerns)
- [Trust Concerns](#trust-concerns)

	[Third Party Hosting FAQ](#third-party-hosting-faq)

	[Where is the list of BTCPay third-party hosts?](#where-is-the-list-of-btcpay-third-party-hosts)

	[How can one become a third-party host?](#how-can-one-become-a-third-party-host)

	[Are there any limitations in features when using a third-party host?](#are-there-any-limitations-in-features-when-using-a-third-party-host)

	[Can I enable the use of my Lightning Network node to others?](#can-i-enable-the-use-of-my-lightning-network-node-to-others)

	[What does the trusted third-party host know about their users?](#what-does-the-trusted-third-party-host-know-about-their-users)

Advantages and disadvantages

Pros
* Easy and quicker setup
* Cheaper and in most cases free (depending if the host is premium or free)
* Receive payments directly to your wallet
* Private key never required (if it is, it’s a scam!)

Cons
* Security concerns
* Privacy concerns
* Limitation of features
* No control over a server
* Have to trust the owner of the server

Concerns For Use

Security Concerns
[Trusted third parties are security holes](https://nakamotoinstitute.org/trusted-third-parties/#selection-7.6-6.2). By relying on someone else to manage a server for you, you are potentially exposing yourself to a certain attack vector.

The most significant attack vector when using a third-party host is the chance that this host will gain access to the management of your funds. This can occur in two ways.

First, a host may allow you to create [hot wallets](https://en.bitcoin.it/wiki/Hot_wallet) on their server. This gives the host complete access to your funds. They will act as a custodian of your private keys and thus your funds. This means you must trust they will not spend your funds. This type of wallet is NOT recommended for use with third-party hosts.

Secondly, a malicious and technically skilled host can create a forked version of BTCPay Server and modify it to be able to either spy on your transactions or replace your [extended public key](https://en.bitcoin.it/wiki/Deterministic_wallet_tools#Risks_of_Sharing_an_Extended_Public_Key_.28xpub.29) with their own. This means that future payments made to you may end up in this malicious party’s wallet.

While a wallet connected with an extended public key IS recommended for use with third-party hosts, It’s impossible to know for certain, if the third party host is using a malicious fork. If you don’t trust the third party host it is best to do the following:

	Do not use hot wallet on the third party server, use an extended public key

	Use it mainly for testing, learning and getting started with BTCPay

	Do not use it with high volume payments or extremely valuable transactions

In BTCPay Server, a private key is never required. This means that funds are safe even if the server is hacked, but a malicious host can intercept future payments and steal those funds. If you follow your transactions via a watch-only wallet, you should be able to detect such attack quickly and notice that your orders are being marked as paid, whereas you don’t see the transactions in your wallet.

:::danger
If a third-party host asks for your private key or pre-generates one for you, be sure it’s a scam. Never share your private key with anyone. It’s called private for a reason.
::

An extended public key replacement attack applies to a self-hosted server as well. A malicious hacker can try to hack your server and try to replace an extended public key.

Privacy Concerns
BTCPay Server does not allow server hosts to view the stores of other users nor have access to any personal data (except for registration email address). The extended public key and even balances of other users can’t be seen. However, as mentioned, a malicious third-party could modify that by creating a fork that can look like BTCPay Server on the front but be something completely different in reality.

The biggest concern, which happens when using a third-party host (even if the owner of a self-hosted server is not malicious) comes from the nature of the Bitcoin itself. If a user is not running a full node but instead relies on someone else’s node, his transactions can be listened to by the owner of that node. Running a full node is not just a convenience that gives you features and enables privacy, it gives you better security and the right to “vote” and validate all the transactions yourself. Don’t trust, verify.

Here are some good resources where you learn more about the importance of full nodes

	[Why Your Business Should Use a Full Node to Accept Bitcoin](https://en.bitcoin.it/wiki/Why_Your_Business_Should_Use_a_Full_Node_to_Accept_Bitcoin)

	[Clearing Up Misconceptions About Full Nodes](https://en.bitcoin.it/wiki/Clearing_Up_Misconceptions_About_Full_Nodes)

Trust Concerns
Third-party hosts have the ability to enable specific features for their non-admin users which require users to place some level of trust in the third-party host, if such features are used.

Specifically, third-party hosts should not enable the following policies without understanding that users will be using hot wallets on the server. These features are disabled by default for non-admins to reduce the risk considerations for both third-party hosts and their users:

	Allow non-admins to create hot wallets for their stores

	Allow non-admins to import their hot wallets to the node wallet

	Allow non-admins to use the internal lightning node in their stores

Third-party users who are granted access to an internal lightning node or hot wallet functionality to enable features such as Payjoin, should understand the risk and trust associated with [using hot wallets](../CreateWallet.md#hot-wallet) before choosing to use it. Use one of the [recommended wallets](../WalletSetup.md) which provide an extended public key to use in your store, if you are unsure which wallet type to use.

Third Party Hosting FAQ

Where is the list of BTCPay third-party hosts?

Feel free to chat with the [Community](../Community.md) to find the appropriate host for your needs, but also make sure to choose one that is trustworthy. Read the rest of this document to better understand the pros and cons of using a third-party host.

:::tip
The BTCPay Server [Directory](https://directory.btcpayserver.org/filter/hosts) lists multiple free or paid third-party hosts that you can register to, to start exploring BTCPay Server.
::

How can one become a third-party host?

To become a third-party host, you need to self-host a BTCPay Server and enable registration for other users.
Go to Server Settings > Policies > Disable registration, unmark the checkbox. You may also want to configure the [SMTP settings](../FAQ/ServerSettings.md#how-to-configure-smtp-settings-in-btcpay) to allow them to reset their password if they forget it.

Alternatively you may keep public registration disabled on your homepage and only invite specific users to create a new account by [invitation link](../FAQ/ServerSettings.md#how-to-add-a-new-user-by-invite).

Are there any limitations in features when using a third-party host?
Yes. Here are some restrictions.
* No [Lightning Network](../LightningNetwork.md) by default. Can be enabled by the third-party host but at the cost of a security risk for registrants using that third-party. [More information](#can-i-enable-the-use-of-my-lightning-network-node-to-others)
* No [wallet re-scan](../FAQ/Wallet.md#what-is-wallet-re-scan-in-btcpay)
* No [Server Settings](../Walkthrough.md#server-settings) access

The limitations happen for technical reasons, mostly because these features require a user to run a full node to use them.

Can I enable the use of my Lightning Network node to others?

Yes, you can enable users that have registered on your BTCPay Server instance to use your Lightning Network node.
[See how](../FAQ/LightningNetwork.md#how-many-users-can-use-lightning-network-in-btcpay)

What does the trusted third-party host know about their users?
Third party hosts (non-malicious) can see the following:

	Total number of users

	The email and username of those users

Note: If additional features are enabled such as non-admin lightning wallet, hot wallets or transmuter, the server admin can see additional information related to those features. Since it’s impossible to know if the third party host is using a malicious fork, it’s best to assume they may know all details about your BTCPay Server usage.

If you are worried about the information a third party host knows about you, please consider [deploying your own](./README.md) self-hosted server.

 # How to add an Altcoin

Bitcoin is the only focus of the project and its core developers. However, opt-in integrations are available for several altcoins.

For more information and the full list of integrated altcoins, check the [Altcoin FAQ page](../FAQ/Altcoin.md).

How can I add an altcoin to BTCPayServer?

The steps for having a coin added are:

	Add support for your crypto to [NBitcoin](https://github.com/MetacoSA/NBitcoin/tree/master/NBitcoin.Altcoins), [NBxplorer](https://github.com/dgarage/NBXplorer), and [BTCPayServer](https://github.com/btcpayserver/btcpayserver). (Use examples from other coins)

	Create your own docker image ([Example for BTC](https://hub.docker.com/r/btcpayserver/bitcoin))

	Create a docker-compose fragment ([Example for BTC](https://github.com/btcpayserver/btcpayserver-docker/blob/master/docker-compose-generator/docker-fragments/bitcoin.yml))

	Add your CryptoDefinition ([Example for BTC](https://github.com/btcpayserver/btcpayserver-docker/blob/master/docker-compose-generator/src/CryptoDefinition.cs))

When testing your coin, DO NOT USE `build.sh`, since it uses a pre-built docker image.

Instead, install [.NET Core 3.1 SDK](https://www.microsoft.com/net/download/windows) and run:

`bash
BTCPAYGEN_CRYPTO1="EXAMPLE-COIN"
BTCPAYGEN_SUBNAME="test"
cd docker-compose-generator/src
dotnet run
`

This will generate your docker-compose in the Generated folder, which you can then run and test.

Note: BTCPay developers do not implement alternative coins on request. Adding a new coin explicitly depends on the community and developers of those coins. Furthermore, BTCPay developers do not spend excessive time testing nor maintaining the altcoins. If you’re submitting a PR for a new coin, make sure that your image works. If the altcoin integration is not actively maintained it will be removed from BTCPay.

 # GreenField API example with cURL

The [GreenField API](https://docs.btcpayserver.org/API/Greenfield/v1/) (also available on your instance on /docs) allows you to operate BTCPay Server via an easy to use REST API.

Note that you can partially generate clients in the language of your choice by using the [Swagger file](https://docs.btcpayserver.org/API/Greenfield/v1/swagger.json).

In this page, we will show you how to use it via command line on linux using curl and jq.

Create a new user

Creating a new user can be done by using [this endpoint](https://docs.btcpayserver.org/API/Greenfield/v1/#tag/Users/paths/~1api~1v1~1users/post).

```bash
BTCPAY_INSTANCE=”https://mainnet.demo.btcpayserver.org”
USER=”MyTestUser@gmail.com”
PASSWORD=”NOTVERYSECURE”
body=”$(echo “{}” | jq –arg “a” “$USER” ‘. + {email:$a}’ 



jq –arg “a” “$PASSWORD” ‘. + {password:$a}’)”







	curl -s 
	-H “Content-Type: application/json” -X POST -d “$body” “$BTCPAY_INSTANCE/api/v1/users”





```

Create a new API key

While we can use basic authentication to access the greenfield API, it is recommended to use API Keys to limit the scope of the credentials.

For example: If we want to [create a new store](https://docs.btcpayserver.org/API/Greenfield/v1/#tag/Stores/paths/~1api~1v1~1stores/post) we need the btcpay.store.canmodifystoresettings permission for the API key.

You can do it through BTCPay Server UI (by browsing /Manage/APIKeys of your instance), but let’s do it via command line using [this endpoint](https://docs.btcpayserver.org/API/Greenfield/v1/#tag/API-Keys/paths/~1api~1v1~1api-keys/post).

```bash
permission=”btcpay.store.canmodifystoresettings”
body=”$(echo “{}” | jq –arg “a” “$permission” ‘. + {permissions:[$a]}’)”
apikey=”$(curl -s 


-H “Content-Type: application/json” –user “$USER:$PASSWORD” -X POST -d “$body” “$BTCPAY_INSTANCE/api/v1/api-keys” | jq -r .apiKey)”




```

Create a new store

Now, with we can use the api key to [create a new store](https://docs.btcpayserver.org/API/Greenfield/v1/#tag/Stores/paths/~1api~1v1~1stores/post).

```bash
store_name=”My awesome store”
body=”$(echo “{}” | jq –arg “a” “$store_name” ‘. + {name:$a}’)”
store_id=”$(curl -s 


-H “Content-Type: application/json” -H “Authorization: token $apikey” -X POST -d “$body” “$BTCPAY_INSTANCE/api/v1/stores”  | jq -r .id)”




```

Create a new API get limiting permission only to read only on the new store

We can make a new specific permission for our new store:
```bash
old_apikey=”$apikey”
permission=”btcpay.store.canviewstoresettings:$store_id”
body=”$(echo “{}” | jq –arg “a” “$permission” ‘. + {permissions:[$a]}’)”
apikey=”$(curl -s 


-H “Content-Type: application/json” –user “$USER:$PASSWORD” -X POST -d “$body” “$BTCPAY_INSTANCE/api/v1/api-keys” | jq -r .apiKey)”




```

We can [revoke our old apikey](https://docs.btcpayserver.org/API/Greenfield/v1/#tag/API-Keys/paths/~1api~1v1~1api-keys~1current/delete).

```bash
curl -s 


-H “Content-Type: application/json” -H “Authorization: token $old_apikey” -X DELETE “$BTCPAY_INSTANCE/api/v1/api-keys/current”




```

Read store information

We can then use the new apikey to [read store](https://docs.btcpayserver.org/API/Greenfield/v1/#operation/Stores_GetStore) information:

```bash
curl -s 


-H “Content-Type: application/json” -H “Authorization: token $apikey” -X GET “$BTCPAY_INSTANCE/api/v1/stores/$store_id”




```


 # Local development

Prerequisites

For the development environment you need to install these tools:

	[.NET Core 3.1 SDK](https://dotnet.microsoft.com/download)

	Docker: [Windows](https://docs.docker.com/docker-for-windows/install/) | [Mac OS](https://docs.docker.com/docker-for-mac/install/) | [Linux](https://docs.docker.com/install/linux/docker-ce/ubuntu/)

Dependencies

To execute tests and run the project for debugging, you need to run a number of dependencies.

We wrapped all our dependencies in a docker-compose file that you can use to bootstrap the development environment:
The file [BTCPayServer.Tests/docker-compose.yml](https://github.com/btcpayserver/btcpayserver/blob/master/BTCPayServer.Tests/docker-compose.yml) can be used to spin everything up:

`bash
git clone https://github.com/btcpayserver/btcpayserver.git
cd btcpayserver/BTCPayServer.Tests
docker-compose up dev
`

Which IDE?

We recommend using Visual Studio Code (cross platform) or Visual Studio 2019 (Windows Only) or Rider (cross platform).
You can of course use VIM if you are hardcore, .NET Core is command-line environment friendly.

Visual Studio Code, Visual Studio and Rider will run the launch profile Bitcoin.
This will run a BTCPay Server instance connecting to the services in your Docker service, so you can easily debug and step through the code.

Build configuration

A build configuration defines how to build BTCPay Server. For example, whether to include some source files, whether to optimize for debugging or performance.

There are several build configurations:

	Debug

	Release

	Altcoins-Debug

	Altcoins-Release

How to use a different one during your local development depends on your IDE.
By default Debug is used, this is a Bitcoin only build excluding any altcoin dependencies. How to use a different one during your local development depends on your IDE.

You can select which build to use via the -c switch in dotnet command line. If you use command line and want to run a Release build:

`bash
dotnet run -c Release
`

Launch profiles

When you start BTCPay Server locally for local development, it needs the right parameter so it can connect to the development time dependencies in the docker-compose file.

Those parameters are wrapped into the dotnet concept of launch profile.

The launch profiles are specified in the [launchSettings.json](https://github.com/btcpayserver/btcpayserver/blob/master/BTCPayServer/Properties/launchSettings.json).

There are currently three launch profiles:

	Bitcoin

	Bitcoin-HTTPS

	Altcoins-HTTPS

By default, Bitcoin is used. How to use a different one during your local development depends on your IDE.

If you use command line, dotnet run allows you to select the launch profile of your choice:

`bash
dotnet run --launch-profile Bitcoin
`

Running tests

Running tests is functioning in the exact same way as running the development time BTCPay Server.

`bash
cd BTCPayServer.Tests
dotnet test
`

The concept of launch profile does not apply for tests, but the concept of build configuration does. For example, if I want to run tests on the Release build:

`bash
dotnet test -c Release
`

The tests are already configured to use the development time dependencies in the docker-compose presented earlier.

You can use the –f (filter) switch to run a specific test.

If you use an IDE, consult your IDE documentation to run tests or switch to different configurations.

Altcoin support development

By default, your IDE or simple dotnet run will use Bitcoin launch profile on Debug build.

	This means that BTCPay Server will be hosted on a local HTTP port, building without altcoin support,

	Run BTCPay Server to connect to Bitcoin only dependencies specified in [BTCPayServer.Tests/docker-compose.yml](https://github.com/btcpayserver/btcpayserver/blob/master/BTCPayServer.Tests/docker-compose.yml).

If you want to develop with altcoins support you need to use the Altcoins-HTTPS launch profile, on the Altcoins-Debug build, and run the [BTCPayServer.Tests/docker-compose.altcoins.yml](https://github.com/btcpayserver/btcpayserver/blob/master/BTCPayServer.Tests/docker-compose.altcoins.yml).

If using command line:

`bash
cd BTCPayServer.Tests
docker-compose -f docker-compose.altcoins.yml up dev
cd ../BTCPayServer
dotnet run -c Altcoins-Debug --launch-profile Altcoins-HTTPS
`

For tests

`bash
cd BTCPayServer.Tests
dotnet test -c Altcoins-Debug
`

HTTPS support for local development

Some browser security features may require that you use HTTPS to be properly tested.

In this case, use Bitcoin-HTTPS (or Altcoin-HTTPS) launch profile. This will create a self signed certificate for your development purpose.

However, your browser will not trust it, making it difficult to debug.

You can instruct your OS to trust this development time certificate by running:

`bash
dotnet dev-certs https --trust
`

Videos

For more information check out these videos:

	[How to contribute to BTCPay Server Development (Windows)](https://youtube.com/watch?v=ZePbMPSIvHM) by Nicolas Dorier

	[Setting up BTCPayServer development environment on Linux (Ubuntu)](https://youtube.com/watch?v=j486T_Rk-yw) by RockStarDev

	[BTCPay Server Development - Testing pull request, payments (MacOS)](https://youtube.com/watch?v=GWR_CcMsEV0) by Pavlenex

and these notes:

	[How to get started with development](https://github.com/btcpayserver/btcpayserver/blob/master/BTCPayServer.Tests/README.md) by Nicolas Dorier (covering relevant docker commands, paying regtest invoices)

 # Architecture

BTCPayServer is a project which ties together several Bitcoin-related components into a coherent user experience for installing and managing your own payment processor.

![Architecture](../img/Architecture.png)

The minimal setup involves:

	[BTCPayServer](https://github.com/btcpayserver/btcpayserver)

	[NBXplorer](https://github.com/dgarage/NBXplorer) (Lightweight block explorer, responsible for tracking payments)

	Bitcoin Core

	(Optional) PostgreSQL

By default, it uses SqlLite, but all production deployments use Postgres.

Additionally, if you need Lightning Network access, NBXplorer supports connections to:

	C-Lightning (via unix sockets)

	Lightning Charge

	LND (via the REST interface)

Video below shows BTCPay Architecture in-depth.

[![BTCPay Architecture](./img/btcpay-architecture-advancing-bitcoin.png “BTCPay Architecture”)](https://www.youtube.com/watch?v=Up0dvorzSNM)

—

We provide several ways of deploying BTCPayServer, depending on whether you favor flexibility or ease-of-use.

From the easiest way to the hardest:

	[Web-Interface LunaNode deployment](/Deployment/LunaNode.md)

	[Azure deployment](/Deployment/Azure.md) (Using a one-click deploy on Microsoft Azure)

	[Docker deployment](https://docs.btcpayserver.org/Docker/) (Using a docker-compose.yml file which bundle all the dependencies together, in almost any environment)

	[Manual deployment](/Deployment/ManualDeployment.md) (Downloading, building and running all the dependencies by yourself)

Some community members also offer [third-party hosting](/Deployment/ThirdPartyHosting.md) (Having someone else manage BTCPayServer for you).

Remember the huge value of having direct control of your wallet and web service; for this reason we recommend you use [Azure deployment](/Deployment/Azure.md) or [Web-Interface deployment](/Deployment/LunaNode.md) and do the setup yourself - it is pretty easy!

 # Customizing themes

BTCPay Server is built on Bootstrap and offers the flexibility to adjust its look to your needs.
Learn more about the [standard design specifications used in BTCPay](https://design.btcpayserver.org/).

Built-in themes

BTCPay Server currently has several built-in themes available for server admins.
Selecting a theme in Server Settings will modify the appearance of the entire server (for all users) without having to make any code changes or additional customizations.

![BTCPay Server Theme](../img/ThemeDarkLight.gif “BTCPay Server Theme”)

There are two other approaches to customizing the theme of your BTCPay Server.

	[Developing a custom theme](#1-custom-themes) (requires technical skills)

	[Using a pre-made Bootstrap theme](#2-bootstrap-themes) (does not require technical skills)

1. Custom themes

This is the way we are building our own themes, like the [Classic](https://design.btcpayserver.org/styles/btcpayserver-theme-classic.css) or [Casa](https://design.btcpayserver.org/styles/btcpayserver-theme-casa.css) theme.

With this approach you provide a CSS file containing the variable definitions ([CSS custom properties](https://developer.mozilla.org/en-US/docs/Web/CSS/–*)) to adjust colors, fonts, etc.

You should copy one of our [predefined themes](https://github.com/btcpayserver/btcpayserver/blob/master/BTCPayServer/wwwroot/main/themes/) and change the variables to fit your needs.
To test and play around with the adjustments, you can also use the developer tools of the browser:
Inspect the <html> element and modify the variables in the :root section of the styles inspector:

![Theme customizations](../img/ThemeCustomization.gif “BTCPay Server Theme Customizations”)

Once you are done with your modifications, you can upload and reference it in the “Custom theme CSS file” field.

![Theme settings](../img/ThemeSettings.png “BTCPay Server Theme Settings”)

Developing and extending a custom theme

The BTCPay Server user interface is built on a customized version of Bootstrap that supports [CSS custom properties](https://developer.mozilla.org/en-US/docs/Web/CSS/–*).
This allows us to change theme related settings like fonts and colors without affecting the [bootstrap.css](#notes-on-bootstrap-css).
Also we can provide just the relevant customized parts instead of shipping a whole bootstrap.css file for each theme.

Take a look at the [predefined themes](https://github.com/btcpayserver/btcpayserver/blob/master/BTCPayServer/wwwroot/main/themes/) to get an overview of this approach.

Modifying existing themes

The custom property definitions in the :root selector are divided into several sections, that can be seen as a cascade:

	The first section contains general definitions (i.e. for custom brand and neutral colors).

	The second section defines variables for specific purposes.
Here you can map the general definitions or create additional ones.

	The third section contains definitions for specific parts of the page, sections or components.
Here you should try to reuse definitions from above as much as possible to provide a consistent look and feel.

The variables defined in a theme file get used in the [site.css](https://github.com/btcpayserver/btcpayserver/blob/master/BTCPayServer/wwwroot/main/site.css) file.

Overriding Bootstrap selectors

In addition to the variables you can also provide styles by directly adding CSS selectors to this file.
This can be seen as a last resort in case there is no variable for something you want to change or some minor tweaking.

Adding theme variables

In general it is a good idea to introduce specific variables for special purposes (like setting the link colors of a specific section).
This allows us to address individual portions of the styles without affecting other parts which might be tight to a general variable.

For cases in which you want to introduce new variables that are used across all themes, add them to the site.css file.
This file contains our modifications of the Bootstrap styles.
Refrain from modifying bootstrap.css directly – see the [additional notes](#notes-on-bootstrap-css) for the reasoning behind this.

Adding a new theme

You should copy one of our predefined themes and change the variables to fit your needs.

To test and play around with the adjustments, you can also use the developer tools of the browser:
Inspect the <html> element and modify the variables in the :root section of the styles inspector.

Notes on bootstrap.css

The bootstrap.css file itself is generated based on what the original vendor bootstrap.css provides.

Right now [Bootstrap](https://getbootstrap.com/docs/4.3/getting-started/theming/) does not use custom properties, but in the future it is likely that they might switch to this approach as well.
Until then we created a build script [in this repo](https://github.com/dennisreimann/btcpayserver-ui-prototype) which generates the bootstrap.css file we are using here.

The general approach should be to not modify the bootstrap.css, so that we can keep it easily updatable.
The initial modifications of this file were made in order to allow for this themeing approach.
Because bootstrap has colors spread all over the place we’d otherwise have to override mostly everything, that’s why these general modifications are in the main bootstrap.css file.

The Bootstrap theme options are another approach of providing customizations, let’s look at this next.

2. Bootstrap themes

[Bootswatch](https://bootswatch.com/) offers lots of custom theme maintained by the Bootstrap community.

![Bootswatch](../img/Bootswatch.png “Bootswatch”)

Please note that this approach works best when used with the Classic theme described above.

If you want to change this theme, find a theme on [Bootswatch](https://bootswatch.com/) which interest you, for example, [Darkly](https://bootswatch.com/darkly/).

Copy the link of the theme:

![CopyBootswatch](../img/CopyBootswatch.png “Copy Bootswatch”)

Now, go into the settings of your store and paste the link to customize the bootstrap theme:

![ModifyBootstrap](../img/ModifyBootstrap.png “Modify Bootstrap”)

And enjoy a new theme!

![CustomTheme](../img/CustomTheme.png “Custom Theme”)

Checkout page themes

BTCPay Server checkout page can be customized to fit your branding.

Go to your Store Settings > Checkout Experience, and link to a custom CSS stylesheet.

Server admins can upload their .css file to [File Storage](/FAQ/ServerSettings.md#how-to-upload-files-to-btcpay) to create a CSS stylesheet link.

Below are examples of businesses that use custom-made checkout themes.

[Andreas M. Antonopolous](https://aantonop.com/)

![Aantonop checkout](../img/Theme-AantonopShop.png “Aantonop BTCPay Checkout”)_**Made by:** [@artdesignbySF](https://twitter.com/artdesignbySF) / <artdesignbySF@protonmail.com>_
<details>

<summary>Click to view CSS</summary>

CSS file:
```css
/*  ===========================CREDITS=========================== /
/  Custom BTCpay Server CSS template made by @artdesignbySF.   /
/  PLEASE CONSIDER DONATING BITCOIN IF YOU FIND          /
/  THIS FILE USEFULL: 3LBQbv72rdSrLmFF66p9gMPDuPMcKL7UL1     /
/  Follow @artdesignbySF on Twitter                /
/  Contact via: artdesignbySF@protonmail.com           /
/  =========================END CREDITS========================= */

/*  =========================DISCLAIMER========================== /
/  Might not be the most efficient or correct way of implementing  /
/  CSS. I am not responsable for breaking your website if things /
/  go wrong. PEACE / LOVE / BITCOIN                /
/  =======================END DISCLAIMER======================== */

/======BACKGROUND COLOR======/
html {


background-color: #fff !important;  /===BACKGROUND COLOR===/




}


	.modal.page {
	background-color: #fff;   /===BACKGROUND COLOR===/





}
/=============================/

/=======OUTLINE SETTINGS=======/
.modal-content{


box-shadow: none; /===OUTSIDE SHADOW===/
outline: 1px solid #000000; /===OUTLINE===/
border-radius: 0px;   /===ROUNDED CORNERS===/




}
/=============================/

/=======HEADER SETTINGS=======/
.top-header {



background-image: linear-gradient(to right, #fff, #fff);  /===HEADER BACKGROUND GRADIENT, CAN BE CHANGED TO SINGLE COLOR. UPLOAD (TRANSPARANT) PNG WITH HEADER LOGO WITH FOLLOWING DIMENTSIONS 720X120PX ===/




color: #e1e1e1;
border-radius:0px;  /===ROUNDED CORNER SETTINGS===/




}


	.top-header .timer-row__progress-bar {
	
	border-top: 1px solid #000000;
	background: #000000;    /===PROGRESS BAR COLOR===/









}


	.top-header .timer-row {
	
border-top: 1px solid #000000;  /===COLORED LINE ABOVE PROGRESS BAR===/




border-bottom: 1px solid #e1e1e1; /===COLORED LINE ABOVE PROGRESS BAR===/
background-image: linear-gradient(to right, #7a7a7a, #7a7a7a);  /===PROGRESS BAR BACKGROUND COLOR===/





}


	.header__icon__img {
	display: block;
width:360px;  /===HEADER DIMENSIONS===/
height:60px;  /===HEADER DIMENSIONS===/
margin-left:-10px;  /===HEADER POSITION CORRECTION===/
margin-top:-10px;   /===HEADER POSITION CORRECTION===/





}
/============================/

/=====PAY WITH / AMOUNTS=====/
.line-items {



background-color: #000000;  /===BACKGROUND COLOR===/
color: #e1e1e1 !important;    /===TEXT COLOR===/





	padding-top: 15px;
	padding-bottom: 10px;








}


	.buyerTotalLine {
	
border-top: 1px solid #e1e1e1;
background-color: #252525;
color: #e1e1e1;





	padding-top: 15px;
	padding-bottom: 12px;









}
/==========================/

/=======PAYMENT TABS=======/
.payment-tabs__slider {


background: #ec912f;  /===SLIDER COLOR===/




}


	.payment-tabs {
	background-color: #252525;  /===BACKGROUND COLOR===/
border-top: 1px solid #ec912f;  /===COLORED LINE ABOVE PAYMENT TABS===/





}
/===========================/

/===OPEN IN WALLET BUTTON===/
.action-button {



color: #e1e1e1 !important;
background-image: linear-gradient(to top, #3f3f3f, #7a7a7a);    /===BUTTON BACKGROUND COLOR GRADIENT===/




border-color:#e1e1e1;   /===BUTTON BORDER COLOR===/
box-shadow: 0px 0px 0px -3px #000000;   /===DROP SHADOW SETTINGS===/
border-radius: 0px;   /===ROUNDED CORNER SETTINGS===/




}


	.action-button:hover {
	
background-image: linear-gradient(to bottom, #3f3f3f, #000000); /===HOVER BUTTON BACKGROUND COLOR GRADIENT===/




border-color:#e1e1e1; /===BUTTON BORDER COLOR===/





}
/============================/

/===BOLT/NODE INFO BUTTONS===/
.btnGroupLnd {



box-shadow: 0px 0px 0px 0px #000000;  /===DROP SHADOW SETTINGS===/




background-image: linear-gradient(to top, #7a7a7a, #7a7a7a);  /===BUTTON BACKGROUND COLOR GRADIENT===/
background-color:#000000; /===BUTTON BACKGROUND COLOR (IF NO GRADIENT IS WANTED DELETE LINE ABOVE THIS)===/
border-color:#000000; /===BUTTON BORDER COLOR===/
border-radius: 0px; /===ROUNDED CORNER SETTINGS===/




}


	.btnGroupLnd button {
	background-image:  linear-gradient(to top, #3f3f3f, #7a7a7a); /===BUTTON BACKGROUND COLOR GRADIENT===/
background-color:#000000; /===BUTTON BACKGROUND COLOR (IF NO GRADIENT IS WANTED DELETE LINE ABOVE THIS)===/
border-color: #000000; /===BUTTON BORDER COLOR===/
border-radius: 0px; /===ROUNDED CORNER SETTINGS===/





}


	.btnGroupLnd button.active {
	background-image:  linear-gradient(to bottom, #3f3f3f, #7a7a7a);  /===ACTIVE BUTTON BACKGROUND COLOR GRADIENT===/
background-color:#000000; /===BUTTON BACKGROUND COLOR (IF NO GRADIENT IS WANTED DELETE LINE ABOVE THIS)===/
border-color: #000000;    /===BUTTON BORDER COLOR===/
border-radius: 0px;   /===ROUNDED CORNER SETTINGS===/





}
/===========================/

/=====CURRENCY DROPDOWN=====/
.payment__currencies {


border-radius:0px;  /===ROUNDED CORNER SETTINGS===/




}


	.currency-selection {
	background-color: #252525;  /===BACKGROUND COLOR===/
border-bottom: 0px solid #e1e1e1;
color: #e1e1e1; /===TEXT COLOR===/
padding-top: 15px;
padding-bottom: 10px;
height: auto;





}


	.vex.vex-theme-btcpay .vex-content  {
	padding: 1px;
border-radius:0px; /===ROUNDED CORNER SETTINGS===/
box-shadow: 0px 0px 0px 0px #000000; /===DROP SHADOW SETTINGS===/





}


	.vexmenu  {
	background-color:#252525; /===BACKGROUND COLOR===/





}


	.vexmenuitem:hover {
	background: #7a7a7a;  /===MENU BACKGROUND COLOR===/





}


	.vexmenuitem > a span {
	color: #e1e1e1; /===MENU BACKGROUND COLOR===/





}


	.payment__currencies {
	background: #7a7a7a; /===MENU HOVER HIGHLIGHT COLOR===/





}


	.payment__currencies:hover {
	background: #252525; /===MENU HOVER HIGHLIGHT COLOR===/
border-color: #e1e1e1;





}
/===========================/

/===QR AND QR BACKGROUND===/
.invoice {



background-color: #000000;  /===MENU BACKGROUND COLOR===/




border-radius: 0px; /===ROUNDED CORNER SETTINGS===/




}


	.payment-box {
	height:425px; /===SIZE IMPORTANT BECAUSE HEIGHT LIGHTNING QR CODE + OUTLINE===/





}


	.payment__scan {
	width:276px;
height:276px;
margin-left:auto;
margin-right:auto;
margin-bottom:5px;
margin-top:0px;
border: 10px solid #f5f5f7; /===QR CODE BORDER SIZE/COLOR (LEAVE AS IS FOR QUICK SCANNING)===/





}


	.recommended-fee {
	margin-top:10px;
padding-top:3px;
height:25px;
background: #000000;
color:#e1e1e1;





}


	.expired__body {
	color: #000000;





}
/==========================/

/======COLOR OF LINKS======/
a {


color: #e1e1e1 !important;  /===LINK COLOR===/




}
/==========================/

/===”COLOR OF SOME TEXTS===/
span {


color:#e1e1e1; /===TEXT COLOR===/




}
/=========================/

/=====LANGUAGE SELECT=====/
#prettydropdown-DefaultLang ul {


color: #e1e1e1 !important; /* ===TEXT COLOR=== /
background-color: #252525 !important;   /*===BACKGROUND COLOR===/
border-color: #000000;
border-radius: 0px;




}


	.checked: {
	color:#000000;





}
/===========================/

/====INSTRUCTIONAL TEXTS====/
.manual__step-one__header {



color: #e1e1e1; /===TEXT COLOR===/




opacity: 1;




}
.content-faded, .manual__step-one__instructions, .manual__step-two__instructions {



color: #e1e1e1; /===TEXT COLOR===/




opacity: 1;




}
/===========================/

/====COPY INFO BOX/TEXTS====/
.copyBox {


background-color:#252525;
border-color:#252525;




}


	.copyAmountText {
	color: #e1e1e1; /===TEXT COLOR===/





}


	.copySectionBox label {
	color: #e1e1e1; /===TEXT COLOR===/
opacity: 1;





}


	.separatorGem {
	background:#ec912f; /===GEM ICON COLOR===/





}
/===========================/

/====PAYMENT SUCCES PAGE====/
/*
.success-block {


background-image: linear-gradient(to top, #252525, #f5f5f7); /===GRADIENT BACKGROUND===//*
height:275px;




}
*/
.success-message {


color: #e1e1e1; /*  ===TEXT COLOR=== */




}
/===========================/

/*  ===========================CREDITS=========================== /
/  Custom BTCpay Server CSS template made by @artdesignbySF.   /
/  PLEASE CONSIDER DONATING BITCOIN IF YOU FIND          /
/  THIS FILE USEFULL: 3LBQbv72rdSrLmFF66p9gMPDuPMcKL7UL1     /
/  Follow @artdesignbySF on Twitter                /
/  Contact via: artdesignbySF@protonmail.com           /
/  =========================END CREDITS========================= */

/*  =========================DISCLAIMER========================== /
/  Might not be the most efficient or correct way of implementing  /
/  CSS. I am not responsable for breaking your website if things /
/  go wrong. PEACE / LOVE / BITCOIN                /
/  =======================END DISCLAIMER======================== */
````
</details>

—

Bitcoin Fortune Cookie

![Bitcoin Fortune Cookie checkout](../img/Theme-BitcoinFortuneCookie.png)_**Made by:** [@artdesignbySF](https://twitter.com/artdesignbySF) / <artdesignbySF@protonmail.com>_
<details>

<summary>Click to view CSS</summary>

CSS file:
```css
/*  ===========================CREDITS=========================== /
/  Custom BTCpay Server CSS template made by @artdesignbySF.   /
/  PLEASE CONSIDER DONATING BITCOIN IF YOU FIND          /
/  THIS FILE USEFULL: 3LBQbv72rdSrLmFF66p9gMPDuPMcKL7UL1     /
/  Follow @artdesignbySF on Twitter                /
/  Contact via: artdesignbySF@protonmail.com           /
/  =========================END CREDITS========================= */

/*  =========================DISCLAIMER========================== /
/  Might not be the most efficient or correct way of implementing  /
/  CSS. I am not responsable for breaking your website if things /
/  go wrong. PEACE / LOVE / BITCOIN                /
/  =======================END DISCLAIMER======================== */

/======BACKGROUND COLOR======/
html {


background-color: #00c3ff !important;   /===BACKGROUND COLOR===/




}


	.modal.page {
	background-color: #00c3ff;  /===BACKGROUND COLOR===/





}
/=============================/

/=======HEADER SETTINGS=======/
.top-header {



background-color: #408cca;  /===HEADER BACKGROUND COLOR===/




border-radius:6px;  /===ROUNDED CORNER SETTINGS===/




}


	.top-header .timer-row__progress-bar {
	
	border-top: 1px solid #00c3ff;
	border-bottom: 1px solid #00c3ff;
background: #00c3ff;    /===PROGRESS BAR COLOR===/









}


	.top-header .timer-row {
	
border-top: 1px solid #00c3ff;  /===COLORED LINE ABOVE PROGRESS BAR===/





	border-bottom: 1px solid #00c3ff; /===COLORED LINE ABOVE PROGRESS BAR===/
	background: #27384b;  /===PROGRESS BAR BACKGROUND COLOR===/









}


	.header__icon__img {
	display: block;
width:;   /===HEADER DIMENSIONS===/
height:;  /===HEADER DIMENSIONS===/
margin-left: 50%;   /===HEADER POSITION CORRECTION===/
margin-top: auto;   /===HEADER POSITION CORRECTION===/





}
/============================/

/=====PAY WITH / AMOUNTS=====/
.line-items {



background-color: #111316;  /===BACKGROUND COLOR===/
color: #fff !important;   /===TEXT COLOR===/





	padding-top: 15px;
	padding-bottom: 10px;
border-top: 1px solid #00c3ff !important;





border-bottom: 0px solid #00c3ff;




}


	.buyerTotalLine {
	
border-top: 1px solid #00c3ff;
background-color: #27384b;
color: #fff;





	padding-top: 15px;
	padding-bottom: 12px;









}
/==========================/

/=======PAYMENT TABS=======/
.payment-tabs__slider {


background: #00c3ff;  /===SLIDER COLOR===/




}


	.payment-tabs {
	
background-color: #27384b;  /===BACKGROUND COLOR===/





	color: #fff;
	border-top: 1px solid #00c3ff;  /===COLORED LINE ABOVE PAYMENT TABS===/





border-bottom: 1px solid #00c3ff; /===COLORED LINE BELOW PAYMENT TABS===/





}
/===========================/

/===OPEN IN WALLET BUTTON===/
.action-button {



color: #fff !important;
background-image: linear-gradient(to bottom, #00c3ff, #408cca);   /===BUTTON BACKGROUND COLOR GRADIENT===/




border-color:#fff;  /===BUTTON BORDER COLOR===/
box-shadow: 0px 0px 15px -3px #000000;  /===DROP SHADOW SETTINGS===/
border-radius: 6px;   /===ROUNDED CORNER SETTINGS===/




}


	.action-button:hover {
	
background-image: linear-gradient(to top, #00c3ff, #408cca);  /===HOVER BUTTON BACKGROUND COLOR GRADIENT===/




border-color:#fff; /===BUTTON BORDER COLOR===/





}
/============================/

/===BOLT/NODE INFO BUTTONS===/
.btnGroupLnd {



box-shadow: 0px 0px 15px -3px #000000;  /===DROP SHADOW SETTINGS===/




background-image: linear-gradient(to right, #00c3ff, #408cca);  /===BUTTON BACKGROUND COLOR GRADIENT===/
background-color:#00c3ff; /===BUTTON BACKGROUND COLOR (IF NO GRADIENT IS WANTED DELETE LINE ABOVE THIS)===/
border-color:#fff;  /===BUTTON BORDER COLOR===/
border-radius: 6px; /===ROUNDED CORNER SETTINGS===/




}


	.btnGroupLnd button {
	background-image: linear-gradient(to right, #00c3ff, #408cca); /===BUTTON BACKGROUND COLOR GRADIENT===/
background-color:#00c3ff; /===BUTTON BACKGROUND COLOR (IF NO GRADIENT IS WANTED DELETE LINE ABOVE THIS)===/
border-color: #fff; /===BUTTON BORDER COLOR===/





}


	.btnGroupLnd button.active {
	background-image: linear-gradient(to right, #00c3ff, #408cca);  /===ACTIVE BUTTON BACKGROUND COLOR GRADIENT===/
background-color:#00c3ff; /===BUTTON BACKGROUND COLOR (IF NO GRADIENT IS WANTED DELETE LINE ABOVE THIS)===/
border-color: #fff;   /===BUTTON BORDER COLOR===/





}
/===========================/

/=====CURRENCY DROPDOWN=====/
.payment__currencies {


border-radius:6px;  /===ROUNDED CORNER SETTINGS===/
background-color: #27384b; /===BACKGROUND COLOR DROPDOWN MENU===/




}


	.payment__currencies:hover {
	background: #00c3ff; /===MENU HOVER HIGHLIGHT COLOR===/





}


	.currency-selection {
	background-color: #408cca;  /===BACKGROUND COLOR===/
border-bottom: 0px solid #00c3ff;
color: #fff;  /===TEXT COLOR===/
padding-top: 15px;
padding-bottom: 10px;
height: auto;





}


	.vex.vex-theme-btcpay .vex-content  {
	padding: 1px;
border-radius:0px; /===ROUNDED CORNER SETTINGS===/
box-shadow: 0px 0px 15px -3px #000000; /===DROP SHADOW SETTINGS===/





}


	.vexmenu  {
	background-color:#00c3ff; /===BACKGROUND COLOR===/





}


	.vexmenuitem:hover {
	background: #fff; /===MENU BACKGROUND COLOR===/





}
/===========================/

/===QR AND QR BACKGROUND===/
.invoice {



background-color: #408cca;  /===MENU BACKGROUND COLOR===/




border-radius: 6px; /===ROUNDED CORNER SETTINGS===/




}


	.payment-box {
	height:420px; /===SIZE IMPORTANT BECAUSE HEIGHT LIGHTNING QR CODE + OUTLINE===/





}


	.payment__scan {
	width:276px;
height:276px;
margin-left:auto;
margin-right:auto;
margin-bottom:5px;
margin-top:0px;
border: 10px solid #f5f5f7; /===QR CODE BORDER SIZE/COLOR (LEAVE AS IS FOR QUICK SCANNING)===/





}


	.recommended-fee {
	margin-top:15px;





}


	.expired__body {
	color: #fff;





}
/==========================/

/======COLOR OF LINKS======/
a {


color: #27384b !important;  /===LINK COLOR===/




}
/==========================/

/===”COLOR OF SOME TEXTS===/
span {


color:#fff; /===TEXT COLOR===/




}
/=========================/

/=====LANGUAGE SELECT=====/
#prettydropdown-DefaultLang ul {


color: #FFF !important; /*  ===TEXT COLOR=== /
background-color: #15171c !important;   /*===BACKGROUND COLOR===/




}
/===========================/

/====INSTRUCTIONAL TEXTS====/
.manual__step-one__header {



color: #fff;  /===TEXT COLOR===/




opacity: 1;




}
.content-faded, .manual__step-one__instructions, .manual__step-two__instructions {



color: #fff;  /===TEXT COLOR===/




opacity: 1;




}
/===========================/

/====COPY INFO BOX/TEXTS====/
.copyBox {


background-color:#27384b;
border-color:#00c3ff;




}


	.copyAmountText {
	color: #fff;  /===TEXT COLOR===/





}


	.copySectionBox label {
	color: #fff;  /===TEXT COLOR===/
opacity: 1;





}


	.separatorGem {
	background:#408cca; /===GEM ICON COLOR===/





}
/===========================/

/====PAYMENT SUCCES PAGE====/
/*
.success-block {


background-image: linear-gradient(to bottom, #fbff0000, #fff700f2); /===GRADIENT BACKGROUND===//*




}
*/
.success-message {


color: #fff; /* ===TEXT COLOR=== */




}
/===========================/

/*  ===========================CREDITS=========================== /
/  Custom BTCpay Server CSS template made by @artdesignbySF.   /
/  PLEASE CONSIDER DONATING BITCOIN IF YOU FIND          /
/  THIS FILE USEFULL: 3LBQbv72rdSrLmFF66p9gMPDuPMcKL7UL1     /
/  Follow @artdesignbySF on Twitter                /
/  Contact via: artdesignbySF@protonmail.com           /
/  =========================END CREDITS========================= */

/*  =========================DISCLAIMER========================== /
/  Might not be the most efficient or correct way of implementing  /
/  CSS. I am not responsable for breaking your website if things /
/  go wrong. PEACE / LOVE / BITCOIN                /
/  =======================END DISCLAIMER======================== */
````
</details>

—

[Bitma.tk](https://bitma.tk/)

![Bitma.tk checkout](../img/Theme-Bitmatk.png)_**Made by:** [@artdesignbySF](https://twitter.com/artdesignbySF) / <artdesignbySF@protonmail.com>_

	<details>
	<summary>Click to view CSS</summary>

CSS file:
```css
/*  ===========================CREDITS=========================== /
/  Custom BTCpay Server CSS template made by @artdesignbySF.   /
/  PLEASE CONSIDER DONATING BITCOIN IF YOU FIND          /
/  THIS FILE USEFULL: 3LBQbv72rdSrLmFF66p9gMPDuPMcKL7UL1     /
/  Follow @artdesignbySF on Twitter                /
/  Contact via: artdesignbySF@protonmail.com           /
/  =========================END CREDITS========================= */

/*  =========================DISCLAIMER========================== /
/  Might not be the most efficient or correct way of implementing  /
/  CSS. I am not responsable for breaking your website if things /
/  go wrong. PEACE / LOVE / BITCOIN                /
/  =======================END DISCLAIMER======================== */

/======BACKGROUND COLOR======/
html {


background-color: #000000;




}


	.modal.page {
	background-image: linear-gradient(60deg, #000000, #203D6D);





}
/=============================/

/=======OUTLINE SETTINGS=======/
.modal-content.long{


border-radius: 5px; /===ROUNDED CORNERS===/
box-shadow: 0px 0px 0px 0px #000000;  /===OUTSIDE SHADOW===/
outline:0px solid #000000;
background-color:#000000;




}
/=============================/

/=======HEADER SETTINGS=======/
.top-header {



background-color: #000535;  /===HEADER BACKGROUND GRADIENT, CAN BE CHANGED TO SINGLE COLOR. UPLOAD (TRANSPARANT) PNG WITH HEADER LOGO WITH FOLLOWING DIMENTSIONS 720X120PX ===/




border-radius: 5px; /===ROUNDED CORNER SETTINGS===/




}


	.top-header .timer-row__progress-bar {
	
background:  linear-gradient(120deg, #203D6D, #000000);   /===PROGRESS BAR COLOR===/




height:26px;





}


	.top-header .timer-row {
	
border-top: 1px solid #000000;  /===COLORED LINE ABOVE PROGRESS BAR===/




border-bottom: 1px solid #000000; /===COLORED LINE ABOVE PROGRESS BAR===/
background-color: #fff; /===PROGRESS BAR BACKGROUND COLOR===/





}


	.header__icon__img {
	display: block;
width:360px;  /===HEADER DIMENSIONS===/
height:60px;  /===HEADER DIMENSIONS===/
margin-left:-10px;  /===HEADER POSITION CORRECTION===/
margin-top:-10px;   /===HEADER POSITION CORRECTION===/
background-color: #fff;
border-radius: 5px 5px 0px 0px;





}
/============================/

/=====PAY WITH / AMOUNTS=====/
.line-items {



	background-color: #000000;  /===BACKGROUND COLOR===/
	color: #000000 !important;    /===TEXT COLOR===/



	padding-top: 15px;
	padding-bottom: 10px;





border-top: 1px solid #000000;




}


	.buyerTotalLine {
	
border-top: 1px solid #000000;





	background-color: #fff;
	color: #000000;



	padding-top: 12px;
	padding-bottom: 12px;









}
/==========================/

/=======PAYMENT TABS=======/
.payment-tabs__slider {


background-image: linear-gradient(120deg, #EEB21C, #EEB21C);  /===SLIDER COLOR===/
height: 5px;




}


	.payment-tabs {
	background: #000000; /===BACKGROUND COLOR===/
border-bottom: 1px solid #fff;  /===COLORED LINE ABOVE PAYMENT TABS===/





}


	.payment-tabs__tab:hover {
	background-image: linear-gradient(45deg, #16294C, #203D6D); /===TAB BACKGROUND ON HOVER===/





}


	.payment-tabs__tab:hover > span {
	color:#EEB21C; /===TEXT BACKGROUND ON HOVER===/





}
/===========================/

/===OPEN IN WALLET BUTTON===/
.action-button {


background-image: linear-gradient(#16294C, #203D6D);    /===BUTTON BACKGROUND COLOR GRADIENT===/
box-shadow: 0px 0px 0px 0px #000000;  /===DROP SHADOW SETTINGS===/
border-radius: 5px;   /===ROUNDED CORNER SETTINGS===/
border: 0px;




}


	.action-button:hover {
	background-image: linear-gradient(#203D6D, #16294C);    /===HOVER BUTTON BACKGROUND COLOR GRADIENT===/



	/*  border-color:#000000; /===BUTTON BORDER COLOR===/
	color: #000000;





}


	.action-button:hover > span {
	color:#EEB21C;
}





/============================/

/===BOLT/NODE INFO BUTTONS===/
.btnGroupLnd {



box-shadow: 0px 0px 0px 0px #000000;  /===DROP SHADOW SETTINGS===/




background-image: linear-gradient(#203D6D, #16294C);  /===BUTTON BACKGROUND COLOR GRADIENT===/
background-color:#000000; /===BUTTON BACKGROUND COLOR (IF NO GRADIENT IS WANTED DELETE LINE ABOVE THIS)===/
border-color:#eeeeee; /===BUTTON BORDER COLOR===/
border-radius: 0px 0px 0px 0px;/===ROUNDED CORNER SETTINGS===/




}

.btnGroupLnd button {
background-image: linear-gradient(#16294C, #203D6D); /===BUTTON BACKGROUND COLOR GRADIENT===/


background-color:#000000; /===BUTTON BACKGROUND COLOR (IF NO GRADIENT IS WANTED DELETE LINE ABOVE THIS)===/
border-color: #eeeeee; /===BUTTON BORDER COLOR===/
border-radius: 0px 0px 0px 0px; /===ROUNDED CORNER SETTINGS===/




}

.btnGroupLnd button.active {
background-image: linear-gradient(#16294C, #203D6D);  /===ACTIVE BUTTON BACKGROUND COLOR GRADIENT===/


background-color:#000000; /===BUTTON BACKGROUND COLOR (IF NO GRADIENT IS WANTED DELETE LINE ABOVE THIS)===/
border-color: #eeeeee;    /===BUTTON BORDER COLOR===/
border-radius: 0px 0px 0px 0px; /===ROUNDED CORNER SETTINGS===/




}
/===========================/

/=====CURRENCY DROPDOWN=====/
.payment__currencies {


border-radius: 5px; /===ROUNDED CORNER SETTINGS===/




}


	.payment__currencies_noborder {
	margin-left:auto;
margin-right:15;
white-space: nowrap;
color:#fff;
background-image: linear-gradient(120deg, #203D6D, #000000);
border-radius: 5px;
padding-right:15px;





}


	.payment__currencies_noborder:hover {
	color:#000000;
background-image: linear-gradient(120deg, #203D6D, #000000);





}


	.currency-selection { /===NOT THE DROP DOWN MENU===/
	background: #fff; /===BACKGROUND COLOR===/
border: 0px solid #000000;
color: #000000; /===TEXT COLOR===/
padding-top: 10px;
padding-bottom: 10px;
height: auto;





}


	.vex.vex-theme-btcpay .vex-content  {
	background:#000000;
padding: 0px;
border-radius: 5px; /===ROUNDED CORNER SETTINGS===/
outline: 1px solid #fff;
box-shadow: 0px 0px 10px 0px #000000; /===DROP SHADOW SETTINGS===/





}


	.vexmenuitem  {
	background-color: linear-gradient(120deg, #000000, #203D6D);





}


	.vex-content:hover {
	border: 0px;





}


	.vexmenuitem:hover {
	color: #fff;  /===MENU TEXT COLOR===/
background-image: linear-gradient(120deg, #000000, #203D6D);  /===MENU BACKGROUND COLOR===/





}


	.vexmenuitem > a span {
	color: #fff;  /===MENU TEXT COLOR===/
text-shadow: 0px 0px 0px #000000;





}


	.vexmenuitem:hover > a span {
	color: #000000; /===MENU TEXT COLOR===/
text-shadow: 0px 0px 0px #000000;





}


	.payment__currencies {
	background-image: linear-gradient(120deg, #203D6D, #000000);
border:0px;





}


	.payment__currencies:hover {
	background-image: linear-gradient(120deg, #000000, #203D6D);   /===MENU HOVER HIGHLIGHT COLOR===/
border:0px;





}


	.payment__currencies:hover > span {
	color: #EEB21C; /===TEXT HOVER HIGHLIGHT COLOR===/
border:0px;





}
/===========================/

/===QR AND QR BACKGROUND===/
.content{


border-radius: 5px; /===ROUNDED CORNER SETTINGS===/
background-color: #000000;
}





	.invoice {
	background-image: linear-gradient(120deg, #203D6D, #000000);  /===MENU BACKGROUND COLOR===/
border-radius: 5px; /===ROUNDED CORNER SETTINGS===/





}


	.payment-box {
	height:425px; /===SIZE IMPORTANT BECAUSE HEIGHT LIGHTNING QR CODE + OUTLINE===/
outline:10px;





}


	.payment__scan {
	width:276px;
height:276px;
margin-left:auto;
margin-right:auto;
margin-bottom:5px;
margin-top:0px;
border: 10px solid #f5f5f7; /===QR CODE BORDER SIZE/COLOR (LEAVE AS IS FOR QUICK SCANNING)===/





}


	.recommended-fee {
	margin-top:10px;
padding-top:3px;
height:25px;





}


	.expired__body {
	color: #000000;





}
/==========================/

/======COLOR OF LINKS======/
a {


color: #fff !important;   /===LINK COLOR===/
text-shadow: 0px 0px 0px #000000;




}
a:hover {


color: #EEB21C !important;  /===LINK COLOR===/
text-shadow: 0px 0px 0px #000000;




}
/==========================/

/===”COLOR OF SOME TEXTS===/
span {


color:#fff; /===TEXT COLOR===/
text-shadow: 0px 0px 0px #000000;




}


	.payment__currencies_noborder > span {
	color:#fff;





}


	.payment__currencies > span {
	color: #fff; /===MENU HOVER HIGHLIGHT COLOR===/





}


	.timer-row__time-left {
	color: #EEB21C;





}


	.timer-row__message > span {
	color: #EEB21C;





}


	.single-item-order__right__btc-price  > span {
	color:#000000;





}


	.single-item-order__right__ex-rate  > span {
	color:#000000;





}


	.line-items__item__value {
	color:#fff;





}


	.line-items__item__label {
	color:#fff;





}


	.line-items__item__label > span {
	color:#fff;





}


	.recommended-fee > span {
	color:#203D6D;





}


	.copyAmountText.copy-cursor._copySpan {
	color:#fff;





}


	.form-text.small.text-muted > span {
	color:#EEB21C;





}
/=========================/

/=====LANGUAGE SELECT=====/
#prettydropdown-DefaultLang ul {


color: #fff; /* ===TEXT COLOR=== /
border-color: #000000;
background-color: #000535;  /*===BACKGROUND COLOR===/
outline: 1px;
border-radius: 5px;
box-shadow: 0px 0px 0px 0px #000000;  /===OUTSIDE SHADOW===/




}


	.checked: {
	color:#000000;





}
/===========================/

/====INSTRUCTIONAL TEXTS====/
.manual__step-one__header {



color: #fff;  /===TEXT COLOR===/




opacity: 1;




}
.content-faded, .manual__step-one__instructions, .manual__step-two__instructions {



color: #fff;  /===TEXT COLOR===/




opacity: 1;




}
/===========================/

/====COPY INFO BOX/TEXTS====/
.copyBox {


background-image: linear-gradient(30deg, #000000, #203D6D);




}


	.copyAmountText {
	color: #000000; /===TEXT COLOR===/





}


	.copySectionBox label {
	color: #EEB21C; /===TEXT COLOR===/
opacity: 1;





}


	.separatorGem {
	background:#fff;  /===GEM ICON COLOR===/





}
/===========================/

/====PAYMENT SUCCES / EXPIRED PAGE====/
/*
.success-block {


background-image: linear-gradient(to top, #20a9e0, #f5f5f7); /===GRADIENT BACKGROUND===//*
height:275px;




}
*/
.success-message {


color: #fff;  /*  ===TEXT COLOR=== */




}


	.expired__body {
	color: #fff;  /*  ===TEXT COLOR=== */





}
/===========================/

/====FA ICONS====/
.fa.fa-angle-double-down{


Color:#000000;




}
.fa-angle-double-up {


Color:#000000;




}
/===========================/

/*  ===========================CREDITS=========================== /
/  Custom BTCpay Server CSS template made by @artdesignbySF.   /
/  PLEASE CONSIDER DONATING BITCOIN IF YOU FIND          /
/  THIS FILE USEFULL: 3LBQbv72rdSrLmFF66p9gMPDuPMcKL7UL1     /
/  Follow @artdesignbySF on Twitter                /
/  Contact via: artdesignbySF@protonmail.com           /
/  =========================END CREDITS========================= */

/*  =========================DISCLAIMER========================== /
/  Might not be the most efficient or correct way of implementing  /
/  CSS. I am not responsable for breaking your website if things /
/  go wrong. PEACE / LOVE / BITCOIN                /
/  =======================END DISCLAIMER======================== */
```
</details>

—

[Blockstream](https://blockstream.com/)

![Blockstream checkout](../img/Theme-Blockstream.png)

	<details>
	<summary>Click to view CSS</summary>

CSS file:
```css
html {


background-color: #111316 !important;




}


	.modal.page {
	background-color: #111316;





}


	.top-header {
	background-color: #15181c;





}


	.top-header .timer-row__progress-bar {
	background: #00c3ff;





}


	.top-header .timer-row {
	background: #1187c1;





}


	.payment-tabs__slider {
	background: #00c3ff;





}


	.action-button {
	color: #fff !important;
background-image: linear-gradient(to right, #00c3ff, #1187c1);





}


	.action-button:active {
	background-image: linear-gradient(to right, #00c3ff, #1187c1);





}


	.invoice {
	background-color: #343f4c;





}


	.expired__body {
	color: #fff;





}


	.currency-selection {
	background-color: #15181c;
border-bottom: 1px solid #565d6e;
color: #fff;
padding-top: 15px;
padding-bottom: 15px;
height: auto;





}


	.line-items {
	background-color: #111316;
color: #565d6e !important;
border-top: 1px solid #565d6e !important;





}


	.buyerTotalLine {
	border-top: 1px solid #202224;
background-color: #15181c;
color: #fff;





}


	.payment-tabs {
	background-color: #15181c;
color: #fff;
border-top: 1px solid #565d6e;
border-bottom: 1px solid #565d6e;





}


	.payment-tabs__tab .active {
	color: #00c3ff;





}


	.payment-tabs__tab.active {
	color: #00c3ff;





}


	a {
	color: #00c3ff !important;





}


	canvas {
	border: 5px solid #fff;





}


	#prettydropdown-DefaultLang ul {
	color: #565d6e !important;
background-color: #111316 !important;





}


	.manual__step-one__header {
	color: #ffffff;





}
.manual__step-one__instructions {


color: #ffffff;




}


	.payment__currencies:hover {
	background: rgba(248, 248, 248,0.1);





}


	.recommended-fee{
	margin-top: 10px;






}

</details>

—

### [Coincards](https://coincards.com/)

![CoinCards checkout](../img/Theme-Coincards.png)


	<details>
	<summary>Click to view CSS</summary>





CSS file:
```css
.top-header {background-color: #fff;}
.top-header .timer-row__progress-bar {background:#ef8022;}
.top-header .timer-row {background: #ffc313;}
.close-icon {color:#000;}
.payment-tabs__slider {background: #ef8022; }
.separatorGem {background: #ef8022;}
.action-button {color: #fff; background-color: #ef8022;border-color: #ef8022;}
.action-button:hover {background-color: #ffc313;}
.action-button:focus, .action-button.focus {color: #fff;background-color: #ef8022;

border-color: #ef8022;}

.action-button:active, .action-button.active, .open>.action-button.dropdown-toggle { color: #fff; background-color: #ef8022; border-color: #ef8022;}
.action-button:active:hover, .action-button:active:focus, .action-button:active.focus, .action-button.active:hover, .action-button.active:focus, .action-button.active.focus, .open>.action-button.dropdown-toggle:hover, .open>.action-button.dropdown-toggle:focus, .open>.action-button.dropdown-toggle.focus { color: #fff; background-color: #ef8022; border-color: #ef8022;}
.btnGroupLnd button {border: solid 1px #ef8022;}
.btnGroupLnd button.active {background-color: #ef8022; border-color: #ef8022;}
.btnGroupLnd button:hover {background-color:#ffc313;}
.btnGroupLnd button.active:hover {background-color:#ef8022;}
```
</details>

—

### [CryptoCloaks](https://www.cryptocloaks.com/)

![CryptoCloak checkout](../img/Theme-CryptoCloaks.png)_**Made by:** [@artdesignbySF](https://twitter.com/artdesignbySF) / <artdesignbySF@protonmail.com>_
<details>


<summary>Click to view CSS</summary>




CSS file:
```css
/* ===========================CREDITS=========================== /
/ Custom BTCpay Server CSS template made by @artdesignbySF. /
/ PLEASE CONSIDER DONATING BITCOIN IF YOU FIND /
/ THIS FILE USEFULL: 3LBQbv72rdSrLmFF66p9gMPDuPMcKL7UL1 /
/ Follow @artdesignbySF on Twitter /
/ Contact via: artdesignbySF@protonmail.com /
/ =========================END CREDITS========================= */

/* =========================DISCLAIMER========================== /
/ Might not be the most efficient or correct way of implementing /
/ CSS. I am not responsable for breaking your website if things /
/ go wrong. PEACE / LOVE / BITCOIN /
/ =======================END DISCLAIMER======================== */

/======BACKGROUND COLOR======/
html {

background-color: #790099 !important; /===BACKGROUND COLOR===/

}

	.modal.page {
	background-color: #790099; /===BACKGROUND COLOR===/

}
/=============================/

/=======HEADER SETTINGS=======/
.top-header {

background-image: linear-gradient(to right, #790099, #cd00b9); /===HEADER BACKGROUND GRADIENT, CAN BE CHANGED TO SINGLE COLOR. UPLOAD (TRANSPARANT) PNG WITH HEADER LOGO WITH FOLLOWING DIMENTSIONS 720X120PX ===/

border-radius:0px; /===ROUNDED CORNER SETTINGS===/

}

	.top-header .timer-row__progress-bar {
	
	border-top: 1px solid #790099;
	border-bottom: 1px solid #790099;
background: #790099; /===PROGRESS BAR COLOR===/

}

	.top-header .timer-row {
	
border-top: 1px solid #fff; /===COLORED LINE ABOVE PROGRESS BAR===/

	border-bottom: 1px solid #fff; /===COLORED LINE ABOVE PROGRESS BAR===/
	background: #481b5c; /===PROGRESS BAR BACKGROUND COLOR===/

}

	.header__icon__img {
	display: block;
width:360px; /===HEADER DIMENSIONS===/
height:60px; /===HEADER DIMENSIONS===/
margin-left:-10px; /===HEADER POSITION CORRECTION===/
margin-top:-10px; /===HEADER POSITION CORRECTION===/

}
/============================/

/=====PAY WITH / AMOUNTS=====/
.line-items {

background-color: #09182e; /===BACKGROUND COLOR===/
color: #fff !important; /===TEXT COLOR===/

	padding-top: 15px;
	padding-bottom: 10px;
border-top: 1px solid #fff !important;

border-bottom: 0px solid #fff;

}

	.buyerTotalLine {
	
border-top: 1px solid #fff;
background-color: #481b5c;
color: #fff;

	padding-top: 15px;
	padding-bottom: 12px;

}
/==========================/

/=======PAYMENT TABS=======/
.payment-tabs__slider {

background: #790099; /===SLIDER COLOR===/

}

	.payment-tabs {
	
background-color: #481b5c; /===BACKGROUND COLOR===/
border-top: 1px solid #fff; /===COLORED LINE ABOVE PAYMENT TABS===/

border-bottom: 1px solid #09182e; /===COLORED LINE BELOW PAYMENT TABS===/

}
/===========================/

/===OPEN IN WALLET BUTTON===/
.action-button {

color: #fff !important;
background-image: linear-gradient(to bottom, #790099, #cd00b9); /===BUTTON BACKGROUND COLOR GRADIENT===/

border-color:#fff; /===BUTTON BORDER COLOR===/
box-shadow: 0px 0px 15px -3px #000000; /===DROP SHADOW SETTINGS===/
border-radius: 0px; /===ROUNDED CORNER SETTINGS===/

}

	.action-button:hover {
	
background-image: linear-gradient(to top, #790099, #cd00b9); /===HOVER BUTTON BACKGROUND COLOR GRADIENT===/

border-color:#fff; /===BUTTON BORDER COLOR===/

}
/============================/

/===BOLT/NODE INFO BUTTONS===/
.btnGroupLnd {

box-shadow: 0px 0px 15px -3px #000000; /===DROP SHADOW SETTINGS===/

background-image: linear-gradient(to right, #790099, #cd00b9); /===BUTTON BACKGROUND COLOR GRADIENT===/
background-color:#790099; /===BUTTON BACKGROUND COLOR (IF NO GRADIENT IS WANTED DELETE LINE ABOVE THIS)===/
border-color:#fff; /===BUTTON BORDER COLOR===/
border-radius: 0px; /===ROUNDED CORNER SETTINGS===/

}

	.btnGroupLnd button {
	background-image: linear-gradient(to right, #790099, #cd00b9); /===BUTTON BACKGROUND COLOR GRADIENT===/
background-color:#790099; /===BUTTON BACKGROUND COLOR (IF NO GRADIENT IS WANTED DELETE LINE ABOVE THIS)===/
border-color: #fff; /===BUTTON BORDER COLOR===/
border-radius: 0px; /===ROUNDED CORNER SETTINGS===/

}

	.btnGroupLnd button.active {
	background-image: linear-gradient(to left, #790099, #cd00b9); /===ACTIVE BUTTON BACKGROUND COLOR GRADIENT===/
background-color:#790099; /===BUTTON BACKGROUND COLOR (IF NO GRADIENT IS WANTED DELETE LINE ABOVE THIS)===/
border-color: #fff; /===BUTTON BORDER COLOR===/
border-radius: 0px; /===ROUNDED CORNER SETTINGS===/

}
/===========================/

/=====CURRENCY DROPDOWN=====/
.payment__currencies {

border-radius:0px; /===ROUNDED CORNER SETTINGS===/

}

	.currency-selection {
	background-color: #481b5c; /===BACKGROUND COLOR===/
border-bottom: 0px solid #fff;
color: #fff; /===TEXT COLOR===/
padding-top: 15px;
padding-bottom: 10px;
height: auto;

}

	.vex.vex-theme-btcpay .vex-content {
	padding: 1px;
border-radius:0px; /===ROUNDED CORNER SETTINGS===/
box-shadow: 0px 0px 15px -3px #000000; /===DROP SHADOW SETTINGS===/

}

	.vexmenu {
	background-color:#15171c; /===BACKGROUND COLOR===/

}

	.vexmenuitem:hover {
	background: #481b5c; /===MENU BACKGROUND COLOR===/

}

	.payment__currencies:hover {
	background: #15171c; /===MENU HOVER HIGHLIGHT COLOR===/

}
/===========================/

/===QR AND QR BACKGROUND===/
.invoice {

background-color: #cd00b9; /===MENU BACKGROUND COLOR===/

border-radius: 0px; /===ROUNDED CORNER SETTINGS===/

}

	.payment-box {
	height:425px; /===SIZE IMPORTANT BECAUSE HEIGHT LIGHTNING QR CODE + OUTLINE===/

}

	.payment__scan {
	width:276px;
height:276px;
margin-left:auto;
margin-right:auto;
margin-bottom:5px;
margin-top:0px;
border: 10px solid #f5f5f7; /===QR CODE BORDER SIZE/COLOR (LEAVE AS IS FOR QUICK SCANNING)===/

}

	.recommended-fee {
	margin-top:15px;

}

	.expired__body {
	color: #000000;

}
/==========================/

/======COLOR OF LINKS======/
a {

color: #fff !important; /===LINK COLOR===/

}
/==========================/

/===”COLOR OF SOME TEXTS===/
span {

color:#fff; /===TEXT COLOR===/

}
/=========================/

/=====LANGUAGE SELECT=====/
#prettydropdown-DefaultLang ul {

color: #FFF !important; /* ===TEXT COLOR=== /
background-color: #15171c !important; /*===BACKGROUND COLOR===/

}
/===========================/

/====INSTRUCTIONAL TEXTS====/
.manual__step-one__header {

color: #fff; /===TEXT COLOR===/

opacity: 1;

}
.content-faded, .manual__step-one__instructions, .manual__step-two__instructions {

color: #fff; /===TEXT COLOR===/

opacity: 1;

}
/===========================/

/====COPY INFO BOX/TEXTS====/
.copyBox {

background-color:#481b5c;
border-color:#481b5c;

}

	.copyAmountText {
	color: #fff; /===TEXT COLOR===/

}

	.copySectionBox label {
	color: #fff; /===TEXT COLOR===/
opacity: 1;

}

	.separatorGem {
	background:#790099; /===GEM ICON COLOR===/

}
/===========================/

/====PAYMENT SUCCES PAGE====/
/*
.success-block {

background-image: linear-gradient(to bottom, #fbff0000, #fff700f2); /===GRADIENT BACKGROUND===//*

}
*/
.success-message {

color: #fff; /* ===TEXT COLOR=== */

}
/===========================/

/* ===========================CREDITS=========================== /
/ Custom BTCpay Server CSS template made by @artdesignbySF. /
/ PLEASE CONSIDER DONATING BITCOIN IF YOU FIND /
/ THIS FILE USEFULL: 3LBQbv72rdSrLmFF66p9gMPDuPMcKL7UL1 /
/ Follow @artdesignbySF on Twitter /
/ Contact via: artdesignbySF@protonmail.com /
/ =========================END CREDITS========================= */

/* =========================DISCLAIMER========================== /
/ Might not be the most efficient or correct way of implementing /
/ CSS. I am not responsable for breaking your website if things /
/ go wrong. PEACE / LOVE / BITCOIN /
/ =======================END DISCLAIMER======================== */
```
</details>

—

### [Human Rights Foundation](https://hrf.org/)

![Human Rights Foundation checkout](../img/Theme-HumanRightsFoundation.png)


	<details>
	<summary>Click to view CSS</summary>

CSS file:





```css
/* ===========================CREDITS=========================== /
/ Custom BTCpay Server CSS template made by @artdesignbySF. /
/ PLEASE CONSIDER DONATING BITCOIN IF YOU FIND /
/ THIS FILE USEFULL: 3LBQbv72rdSrLmFF66p9gMPDuPMcKL7UL1 /
/ Follow @artdesignbySF on Twitter /
/ Contact via: artdesignbySF@protonmail.com /
/ =========================END CREDITS========================= */

/* =========================DISCLAIMER========================== /
/ Might not be the most efficient or correct way of implementing /
/ CSS. I am not responsable for breaking your website if things /
/ go wrong. PEACE / LOVE / BITCOIN /
/ =======================END DISCLAIMER======================== */

/======FONT SETTINGS======/
@import url(’https://fonts.googleapis.com/css?family=Noto+Serif:400,400i,700,700i’);
@font-face {font-family: ‘Gilroy-Bold’;src: url(‘fonts/38FF13_11_0.eot’);src: url(‘fonts/38FF13_11_0.eot?#iefix’) format(‘embedded-opentype’),url(‘fonts/38FF13_11_0.woff2’) format(‘woff2’),url(‘fonts/38FF13_11_0.woff’) format(‘woff’),url(‘fonts/38FF13_11_0.ttf’) format(‘truetype’);}
@font-face {font-family: ‘Gilroy-Medium’;src: url(‘fonts/38FF13_9_0.eot’);src: url(‘fonts/38FF13_9_0.eot?#iefix’) format(‘embedded-opentype’),url(‘fonts/38FF13_9_0.woff2’) format(‘woff2’),url(‘fonts/38FF13_9_0.woff’) format(‘woff’),url(‘fonts/38FF13_9_0.ttf’) format(‘truetype’);}
@font-face {font-family: ‘Gilroy-Regular’;src: url(‘fonts/38FF13_6_0.eot’);src: url(‘fonts/38FF13_6_0.eot?#iefix’) format(‘embedded-opentype’),url(‘fonts/38FF13_6_0.woff2’) format(‘woff2’),url(‘fonts/38FF13_6_0.woff’) format(‘woff’),url(‘fonts/38FF13_6_0.ttf’) format(‘truetype’);}

	body {
	font-family: ‘Gilroy-Bold’, sans-serif;

}

/=============================/

/======BACKGROUND COLOR======/
html {

background-color: rgba(0,0,0,.8);

}

	.modal.page {
	background-image: linear-gradient(30deg, #e0048b, #ee3129);

}
/=============================/

/=======OUTLINE SETTINGS=======/
.modal-content.long{

border-radius: 0px; /===ROUNDED CORNERS===/
box-shadow: 0px 0px 0px 0px #000000; /===OUTSIDE SHADOW===/
outline:1px solid #000000;

}
/=============================/

/=======HEADER SETTINGS=======/
.top-header {

background-color: #fff; /===HEADER BACKGROUND GRADIENT, CAN BE CHANGED TO SINGLE COLOR. UPLOAD (TRANSPARANT) PNG WITH HEADER LOGO WITH FOLLOWING DIMENTSIONS 720X120PX ===/

border-radius: 0px; /===ROUNDED CORNER SETTINGS===/

}

	.top-header .timer-row__progress-bar {
	
background: linear-gradient(30deg, #e0048b, #ee3129); /===PROGRESS BAR COLOR===/

height:26px;

}

	.top-header .timer-row {
	
border-top: 1px solid #000000; /===COLORED LINE ABOVE PROGRESS BAR===/

border-bottom: 1px solid #000000; /===COLORED LINE ABOVE PROGRESS BAR===/
background-color: #fff; /===PROGRESS BAR BACKGROUND COLOR===/

}

	.top-header .timer-row.expiring-soon {
	background: #e0048b;

}

	.header__icon__img {
	display: block;
width:360px; /===HEADER DIMENSIONS===/
height:60px; /===HEADER DIMENSIONS===/
margin-left:-10px; /===HEADER POSITION CORRECTION===/
margin-top:-10px; /===HEADER POSITION CORRECTION===/
background-color: rgba(0,0,0,.8);

}
/============================/

/=====PAY WITH / AMOUNTS=====/
.line-items {

	background-color: #000000; /===BACKGROUND COLOR===/
	color: #000000 !important; /===TEXT COLOR===/

	padding-top: 15px;
	padding-bottom: 10px;

border-top: 1px solid #000000;

}

	.buyerTotalLine {
	
border-top: 1px solid #000000;

	background-color: #fff;
	color: #000000;

	padding-top: 12px;
	padding-bottom: 12px;

}
/==========================/

/=======PAYMENT TABS=======/
.payment-tabs__slider {

background-image: linear-gradient(30deg, #e0048b, #ee3129); /===SLIDER COLOR===/
height: 5px;

}

	.payment-tabs {
	background: #000000; /===BACKGROUND COLOR===/
border-bottom: 1px solid #fff; /===COLORED LINE ABOVE PAYMENT TABS===/

}

	.payment-tabs__tab:hover {
	background-color: #fff; /===TAB BACKGROUND ON HOVER===/

}

	.payment-tabs__tab:hover > span {
	color:#000000; /===TEXT BACKGROUND ON HOVER===/

}
/===========================/

/===OPEN IN WALLET BUTTON===/
.action-button {

background-image: linear-gradient(30deg, #e0048b, #ee3129); /===BUTTON BACKGROUND COLOR GRADIENT===/
box-shadow: 0px 0px 0px 0px #000000; /===DROP SHADOW SETTINGS===/
border-radius: 0px; /===ROUNDED CORNER SETTINGS===/
border: 0px;

}

	.action-button:hover {
	background-image: linear-gradient(30deg, #ee3129, #e0048b); /===HOVER BUTTON BACKGROUND COLOR GRADIENT===/

	/* border-color:#000000; /===BUTTON BORDER COLOR===/
	color: #000000;

}

	.action-button:hover > span {
	color:#000000;
}

/============================/

/===BOLT/NODE INFO BUTTONS===/
.btnGroupLnd {

box-shadow: 0px 0px 0px 0px #000000; /===DROP SHADOW SETTINGS===/

background-image: linear-gradient(30deg, #ee3129, #e0048b); /===BUTTON BACKGROUND COLOR GRADIENT===/
background-color:#000000; /===BUTTON BACKGROUND COLOR (IF NO GRADIENT IS WANTED DELETE LINE ABOVE THIS)===/
border-color:#000000; /===BUTTON BORDER COLOR===/
border-radius:0px; /===ROUNDED CORNER SETTINGS===/

}

	.btnGroupLnd button {
	
background-image: linear-gradient(30deg, #e0048b, #ee3129); /===BUTTON BACKGROUND COLOR GRADIENT===/
background-color:#000000; /===BUTTON BACKGROUND COLOR (IF NO GRADIENT IS WANTED DELETE LINE ABOVE THIS)===/
border-color: #000000;
border-radius:0px; /===BUTTON BORDER COLOR===/

/===ROUNDED CORNER SETTINGS===/

}

	.btnGroupLnd button:hover {
	
background-image: linear-gradient(30deg, #e0048b, #ee3129); /===BUTTON BACKGROUND COLOR GRADIENT===/
background-color:#000000; /===BUTTON BACKGROUND COLOR (IF NO GRADIENT IS WANTED DELETE LINE ABOVE THIS)===/
border-color: #000000;
color:#fff;
border-radius:0px; /===BUTTON BORDER COLOR===/

/===ROUNDED CORNER SETTINGS===/

}

	.btnGroupLnd button.active {
	background-image: linear-gradient(30deg, #ee3129, #e0048b); /===ACTIVE BUTTON BACKGROUND COLOR GRADIENT===/
background-color:#000000; /===BUTTON BACKGROUND COLOR (IF NO GRADIENT IS WANTED DELETE LINE ABOVE THIS)===/
border-color: #000000;
border-radius:0px; /===BUTTON BORDER COLOR===/

/===ROUNDED CORNER SETTINGS===/

}

	.btnGroupLnd button:last-child {
	border-top-right-radius: 0px;
border-bottom-right-radius: 0px;
border-top-left-radius: 0px;
border-bottom-left-radius: 0px;

}
.btnGroupLnd button:first-child {

border-top-right-radius: 0px;
border-bottom-right-radius: 0px;
border-top-left-radius: 0px;
border-bottom-left-radius: 0px;

}
/===========================/

/=====CURRENCY DROPDOWN=====/
.payment__currencies {

border-radius: 0px; /===ROUNDED CORNER SETTINGS===/

}

	.payment__currencies_noborder {
	margin-left:auto;
margin-right:15;
white-space: nowrap;
color:#fff;
background-image: linear-gradient(30deg, #ee3129, #e0048b);
border-radius: 0px;
padding-right:15px;

}

	.payment__currencies_noborder:hover {
	color:#000000;
background-image: linear-gradient(30deg, #e0048b, #ee3129);

}

	.currency-selection { /===NOT THE DROP DOWN MENU===/
	
	background: #fff; /===BACKGROUND COLOR===/
	border: 0px solid #000000;
color: #000000; /===TEXT COLOR===/
padding-top: 10px;
padding-bottom: 10px;
height: auto;

}

	.vex.vex-theme-btcpay .vex-content {
	background:#000000;
padding: 0px;
border-radius: 0px; /===ROUNDED CORNER SETTINGS===/
outline: 1px solid #fff;
box-shadow: 0px 0px 10px 0px #000000; /===DROP SHADOW SETTINGS===/

}

	.vexmenuitem {
	background-color: #000000;

}

	.vex-content:hover {
	border: 0px;

}

	.vexmenuitem:hover {
	color: #000000; /===MENU TEXT COLOR===/
background-image: linear-gradient(30deg, #ee3129, #e0048b); /===MENU BACKGROUND COLOR===/

}

	.vexmenuitem > a span {
	color: #fff; /===MENU TEXT COLOR===/
text-shadow: 0px 0px 0px #000000;

}

	.vexmenuitem:hover > a span {
	color: #000000; /===MENU TEXT COLOR===/
text-shadow: 0px 0px 0px #000000;

}

	.payment__currencies {
	background-image: linear-gradient(30deg, #e0048b, #ee3129);
border:0px;

}

	.payment__currencies:hover {
	background-image: linear-gradient(30deg, #ee3129, #e0048b); /===MENU HOVER HIGHLIGHT COLOR===/
border:0px;

}

	.payment__currencies:hover > span {
	color: #000000; /===TEXT HOVER HIGHLIGHT COLOR===/
border:0px;

}
/===========================/

/===QR AND QR BACKGROUND===/
.invoice {

background-color: #000000; /===MENU BACKGROUND COLOR===/

border-radius: 0px; /===ROUNDED CORNER SETTINGS===/

}

	.payment-box {
	height:425px; /===SIZE IMPORTANT BECAUSE HEIGHT LIGHTNING QR CODE + OUTLINE===/

}

	.payment__scan {
	width:276px;
height:276px;
margin-left:auto;
margin-right:auto;
margin-bottom:5px;
margin-top:0px;
border: 10px solid #f5f5f7; /===QR CODE BORDER SIZE/COLOR (LEAVE AS IS FOR QUICK SCANNING)===/
border-radius: 0px;

}

	.recommended-fee {
	margin-top:10px;
padding-top:3px;
height:25px;

}

	.expired__body {
	color: #000000;

}
/==========================/

/======COLOR OF LINKS======/
a {

color: #fff !important; /===LINK COLOR===/
text-shadow: 0px 0px 0px #000000;

}
/==========================/

/===”COLOR OF SOME TEXTS===/
span {

color:#fff; /===TEXT COLOR===/
text-shadow: 0px 0px 0px #000000;

}

	.payment__currencies_noborder > span {
	color:#fff;

}

	.payment__currencies > span {
	color: #fff; /===MENU HOVER HIGHLIGHT COLOR===/

}

	.timer-row__time-left {
	color: #000000;

}

	.timer-row__message > span {
	color: #000000;

}

	.single-item-order__right__btc-price > span {
	color:#000000;

}

	.single-item-order__right__ex-rate > span {
	color:#000000;

}

	.line-items__item__value {
	color:#fff;

}

	.line-items__item__label {
	color:#fff;

}

	.line-items__item__label > span {
	color:#fff;

}

	.recommended-fee > span {
	color:#444444;

}

	.copyAmountText.copy-cursor._copySpan {
	color:#fff;

}

	.form-text.small.text-muted > span {
	color:#000000;

}
/=========================/

/=====LANGUAGE SELECT=====/
#prettydropdown-DefaultLang ul {

color: #fff; /* ===TEXT COLOR=== /
background-color: #000000; /*===BACKGROUND COLOR===/
border: 0px;
border-radius: 0px;
box-shadow: 0px 0px 0px 0px #000000; /===OUTSIDE SHADOW===/
font-family: ‘Gilroy-Bold’, sans-serif;

}

	.checked: {
	color:#000000;

}
/===========================/

/====INSTRUCTIONAL TEXTS====/
.manual__step-one__header {

color: #fff; /===TEXT COLOR===/

opacity: 1;

}
.content-faded, .manual__step-one__instructions, .manual__step-two__instructions {

color: #fff; /===TEXT COLOR===/

opacity: 1;

}
/===========================/

/====COPY INFO BOX/TEXTS====/
.copyBox {

background-image: linear-gradient(30deg, #e0048b, #ee3129);

}

	.copyAmountText {
	color: #000000; /===TEXT COLOR===/

}

	.copySectionBox label {
	color: #000000; /===TEXT COLOR===/
opacity: 1;

}

	.separatorGem {
	background:#fff; /===GEM ICON COLOR===/

}
/===========================/

/====PAYMENT SUCCES / EXPIRED PAGE====/
/*
.success-block {

background-image: linear-gradient(to top, #20a9e0, #f5f5f7); /===GRADIENT BACKGROUND===//*
height:275px;

}
*/
.success-message {

color: #fff; /* ===TEXT COLOR=== */

}

	.expired__body {
	color: #fff; /* ===TEXT COLOR=== */

}
/===========================/

/====FA ICONS====/
.fa.fa-angle-double-down{

Color:#000000;

}
.fa-angle-double-up {

Color:#000000;

}
/===========================/

/* ===========================CREDITS=========================== /
/ Custom BTCpay Server CSS template made by @artdesignbySF. /
/ PLEASE CONSIDER DONATING BITCOIN IF YOU FIND /
/ THIS FILE USEFULL: 3LBQbv72rdSrLmFF66p9gMPDuPMcKL7UL1 /
/ Follow @artdesignbySF on Twitter /
/ Contact via: artdesignbySF@protonmail.com /
/ =========================END CREDITS========================= */

/* =========================DISCLAIMER========================== /
/ Might not be the most efficient or correct way of implementing /
/ CSS. I am not responsable for breaking your website if things /
/ go wrong. PEACE / LOVE / BITCOIN /
/ =======================END DISCLAIMER======================== */
```
</details>

—

### [Shiftcrypto](https://shiftcrypto.ch/)

![Shiftcrypto checkout](../img/Theme-cryptosecurity.png)


	<details>
	<summary>Click to view CSS</summary>





CSS file:
```css

.top-header {background-color: #fff;}
.top-header .timer-row__progress-bar {background:#5E94BF;}
.top-header .timer-row {background: #AAAAAA;}
.close-icon {color:#000;}
.payment-tabs__slider {background: #5E94BF; }
.separatorGem {background: #5E94BF;}
.action-button {color: #fff; background-color: #5E94BF;border-color: #5E94BF;}
.action-button:hover {background-color: #7faacc;}
.action-button:focus, .action-button.focus {color: #fff;background-color: #5E94BF;

border-color: #5E94BF;}

.action-button:active, .action-button.active, .open>.action-button.dropdown-toggle { color: #fff; background-color: #5E94BF; border-color: #5E94BF;}
.action-button:active:hover, .action-button:active:focus, .action-button:active.focus, .action-button.active:hover, .action-button.active:focus, .action-button.active.focus, .open>.action-button.dropdown-toggle:hover, .open>.action-button.dropdown-toggle:focus, .open>.action-button.dropdown-toggle.focus { color: #fff; background-color: #5E94BF; border-color: #5E94BF;}
.btnGroupLnd button {border: solid 1px #5E94BF;}
.btnGroupLnd button.active {background-color: #5E94BF; border-color: #5E94BF;}
.btnGroupLnd button:hover {background-color:#7faacc;}
.btnGroupLnd button.active:hover {background-color:#5E94BF;}
```
</details>

—

### [Wears My Liberty](https://wearsmyliberty.com)

![WearMyLiberty](../img/Theme-WearMyLiberty.png)


	<details>
	<summary>Click to view CSS</summary>





CSS file:
```css
.modal.page {background-color: #efefef;}
.top-header .header {height: 80px;}
.header__icon__img {height:60px;}
.top-header .timer-row {padding: 4px 14px; position: relative; transition: background 1s ease;}
.top-header {max-height: 120px; transition: all .2s ease-out;}
.top-header {background-color: #000;}
.top-header .timer-row__progress-bar {background:#ce0000;}
.top-header .timer-row {background: #a0a0a0;}
.payment-tabs__slider {background: #aa0303; }
.separatorGem {background: #aa0303;}
.action-button {color: #fff; background-color: #aa0303;border-color: #700000;}
.action-button:hover {background-color: #ef8022;}
.action-button:focus, .action-button.focus {color: #fff;background-color: #aa0303;

border-color: #aa0303;}

.action-button:active, .action-button.active, .open>.action-button.dropdown-toggle { color: #fff; background-color: #3aa821; border-color: #aa0303;}
.action-button:active:hover, .action-button:active:focus, .action-button:active.focus, .action-button.active:hover, .action-button.active:focus, .action-button.active.focus, .open>.action-button.dropdown-toggle:hover, .open>.action-button.dropdown-toggle:focus, .open>.action-button.dropdown-toggle.focus { color: #fff; background-color: #3aa821; border-color: #aa0303;}
```
</details>




            

          

      

      

    

  

    
      
          
            
  # Altcoins FAQ

This page answers some of the common questions about alternative cryptocurrencies - altcoins.

[[toc]]

## Which coins does BTCPay Server support?

Bitcoin is the only focus of the project and its core developers. However, opt in integrations are present for several altcoins:


	BGold (BTG) (also known as Bitcoin Gold)


	BPlus (XBC) (also known as Bitcoin Plus)


	Bitcore (BTX)


	Dash (DASH)


	Dogecoin (DOGE)


	Feathercoin (FTC)


	Groestlcoin (GRS)


	Liquid Bitcoin (LBTC) (comes with Liquid Tether support USDt) [(notes on deployment & usage)](https://github.com/btcpayserver/btcpayserver/issues/1282)


	Litecoin (LTC)


	Monacoin (MONA)


	Monero (XMR) [(notes on deployment)](https://github.com/btcpayserver/btcpayserver-docker/issues/204#issuecomment-552755422)


	Polis (POLIS)


	Viacoin (VIA)


	Ethereum (ETH) and related tokens [notes on deployment)](https://github.com/btcpayserver/btcpayserver/pull/1730)




Altcoins are maintained by their respective communities and are listed here only for convenience. For support regarding Altcoin deployment, functionalities or issues, please contact the Altcoin maintainer or community directly.

## Can an XYZ coin be added in BTCPay?

No. BTCPay developers don’t add alternative coins on request. Adding a new coin explicitly depends on the community and developers of those coins. Furthermore, BTCPay developers do not spend excessive time testing nor maintaining the altcoins. If you’re submitting a PR for a new coin, make sure that it works. If the altcoin integration is not actively maintained it will be removed from BTCPay.

## How to add an altcoin in BTCPay?

To add a new coin to BTCPay, please [follow the instructions here](../Development/Altcoins.md#how-can-i-add-an-altcoin-to-btcpayserver).

## How to add an altcoin to an existing BTCPay deployment?

If you want to expand the number of coins in your existing BTCPay Server installation, make sure that you have enough storage space on your machine.

In this example, we only have Bitcoin, and we’re adding Litecoin to our docker deployment.

The coin structure:

`
BTCPAYGEN_CRYPTO1: First supported cryptocurrency (e.g., BTC, LTC. Default: btc)
BTCPAYGEN_CRYPTO2: Second supported crypto currency (e.g. btc, ltc. Default: (empty))
BTCPAYGEN_CRYPTON: N'th supported crypto currency where N is 9 at maximum. (eg. btc, ltc. Default: (empty))
`

To add Litecoin, as your second coin (CRYPTO2) do this :

`bash
sudo su -
export BTCPAYGEN_CRYPTO2="ltc"
. ./btcpay-setup.sh -i
`

## How to remove a coin from BTCPay?

In the [example above](#how-to-add-an-altcoin-to-an-existing-btcpay-deployment) we’ve added Litecoin as the second coin. To remove a particular coin, use the following command:

`bash
sudo su -
export BTCPAYGEN_CRYPTO2=""
. ./btcpay-setup.sh -i
`

Where CRYPTO**2** should be replaced with a coin number you wish to remove. If you have an XYZ coin as BTCPAYGEN_CRYPTO3, and you want to remove it, you should use CRYPTO**3**.



            

          

      

      

    

  

    
      
          
            
  # Apps FAQ

This document covers frequently asked questions about the BTCPay Server Apps.

[[toc]]

## What are the Apps in BTCPay?

Apps are features you can use to expand the use case of your BTCPay. See the [apps doc](../Apps.md) for more information.

## Is there a limit on the number of Apps I can create?

Apps are added on the store level. To create one, you need to have a store already setup. There is no limit to the number of apps that can be assigned to a store.

## Is there a Point of Sale feature in BTCPay?

Yes. Please read our [guide on creating the POS app](../WhatsNext.md#creating-the-pay-button).

## How can I use BTCPay in a physical store?

You can use our Point of Sale (PoS) app. When you create a PoS app within BTCPay Server, it will be publicly accessible via a URL where checkout buttons for products you’ve created for your PoS will be displayed.
To have a physical PoS, the easiest solution (currently) is to create a PoS App in BTCPay and display it on any web device such as a phone, tablet or pc.

Please follow our detailed guide on how to use our [PoS App on a mobile device](https://blog.btcpayserver.org/bitcoin-pos/). Also note that Section 2.3 Connecting a Wallet is covered much more in-depth here in the [wallet section](../WalletSetup.md).

## How to customize the appearance of Point of Sale App in BTCPay

It is very easy to customize the look of the Point of Sale app. [Follow this guide](../Development/Theme.md) to learn how to change the theme.

## What is a Payment Button?

The Payment Button is a simple and customizable HTML button you can create and embed into your website. To create a payment button, [follow this guide](../WhatsNext.md#creating-the-point-of-sale-app).

## How to create a Pay Button with a custom amount?

The BTCPay Server Pay Button which can be found in Store Settings > Pay Button, currently does not support custom amounts.
However, you can use a work-around:


	[Create Point of sale app](../WhatsNext.md#creating-the-point-of-sale-app)


	Enable user can input a custom amount field


	Remove all the products from the automatically generated template.


	Save settings.


	Click on the Embed payment button linking to PoS item at the bottom of the page and copy the expanded code. Paste it into html page of your website.


	Remove the extra fields you do not need, especially <input name=”price” type=”hidden” value=”10” /> so that button redirects to the point of sale.




![Custom Amount Pay Button](../img/BTCPayPayButtonDynamic2.png)
![Custom Amount Pay Button](../img/BTCPayPayButtonDynamic.png)

## How to map a domain name to an app?

BTCPay Server Apps can have a domain name that’s different from the servers domain. Let’s assume you have BTCPay Server at mybtcpayserver.com and want to display your PoS app on mybtcpaypos.com instead mybtcpayserver.com/apps/pos/abc123
First, [configure DNS settings](/Deployment/ChangeDomain.md#setting-up-your-dns-record) of mypointofsale.com and make sure it’s pointing to the external ip of your BTCPay Server.

Next, add additional domain or subdomain name(s) by adding a new environment variable through ssh:

`bash
sudo su -
export BTCPAY_ADDITIONAL_HOSTS="mybtcpaypos.com"
. btcpay-setup.sh -i
`

If you want to add multiple domains, you just need to update the env variables again:

`bash
sudo su -
export BTCPAY_ADDITIONAL_HOSTS="mybtcpaypos.com,subdomain.domain2.com,domain3.com"
. btcpay-setup.sh -i
`

Finally, in Server Settings > Policies click on the Map specific domains to specific apps

![App domain mapping](../img/domainmapping1.png)

Enter domain name, select a previously created app from the drop down menu and click save to map the app to specific domain.

![App domain mapping](../img/domainmapping2.png)

If any of the additionally added hosts do not have a properly configured DNS, Let’s Encrypt will not be able to renew the certificate for any of the domains, including the main domain. If you’re using additional hosts and facing https issues with the main domain, try removing a domain from the BTCPAY_ADDITIONAL_HOSTS and re-run the setup. The https issue also occurs if [Dynamic DNS](/Deployment/DynamicDNS.md) has not been renewed and is configured as an additional host.

If for any reason, you want an app to be on the same domain as your BTCPay Server homepage, you can select to display it on the root. In that case, no DNS configuration is needed, since your domain is already pointing properly. Using an app on the root domain of BTCPay Server means you’ll have to access the login and other pages manually. The easiest way is to append a page route such as /apps or /stores to your root domain. (Ex: mybtcpayserver.com/apps). This will make navigation to your root displayed app easier, but navigation to other pages (such as Login) more challenging for users.

## How to redirect to another site after payment?

Point of Sale apps allow redirecting customers to any URL after an invoice is paid. Modify the redirect functionality in Apps > Settings

![Set Point of Sale Redirects](../img/point-of-sale/AppRedirect.png)

In PoS settings these are the following options for redirects on paid invoices:


	
	No - Without Redirect URL
	
	Invoice displays a prompt for the user to return to the PoS App (Default setting).










	
	No - With Redirect URL
	
	Invoice displays a prompt for the user to return to the provided App Redirect URL.










	
	Yes - Without Redirect URL
	
	Paid invoice automatically redirects to the PoS App.










	
	Yes - With Redirect URL
	
	Paid invoice automatically redirects to the provided App Redirect URL.










	
	Use Store Settings
	
	Enable/disable automatic redirect to the PoS App on the [store level](../FAQ/Stores.md#how-to-redirect-store-invoices-after-payment).












Notes:
1. Provide the Redirect URL in the App Settings (above the redirect option).
2. Expired or partially paid [invoices](../Invoices.md#invoice-statuses) will not redirect, even if the setting is enabled. This feature is for paid invoices only.
3. Alternatively, redirect URLs can be specified via the API (i.e. Embedded PoS).

## How to integrate WooCommerce Store into a BTCPay Crowdfund app?

If you want to provide a way for your backers to receive digital files and physical products, you can embed WooCommerce store into your Crowdfunding app.

![Crowdfunding WooCommerce Integration Preview](../img/CrowdfundingWoo.gif)

The following tutorial assumes you have a semi-advanced understanding of BTCPay, WordPress and WooCommerce.

### Requirements


	Wordpress Website


	[WooCommerce Plugin](https://wordpress.org/plugins/woocommerce/)


	[BTCPay for WooCommerce Plugin](https://wordpress.org/plugins/btcpay-for-woocommerce/)


	[Storefront Theme](https://wordpress.org/themes/storefront/) (if you’re using another theme, you may need to modify the CSS code to fit your theme.


	BTCPay Server




Important Note  Make sure that both your WooCommerce store and BTCPay Server are on a same domain. Some browsers have aggressive way of blocking the cross-domain embedded content. Quite specifically, Safari on iOS will destroy the cookie when the item is added, which will lead to empty cart. There’s no other way to fix this besides having BTCPay and Woo on a same domain as subdomains at least.

#### Optional WordPress Plugins

The following plugins are recommended, but not required. You don’t have to use them if you’re an advanced WordPress user.


	[Flexible Checkout Fields](https://wordpress.org/plugins/flexible-checkout-fields/) (to edit checkout and remove redundant checkout fields in Woo)


	[WooCommerce Direct Checkout](https://wordpress.org/plugins/woocommerce-direct-checkout/) (remove redundant steps in the checkout process and make pledging quicker)


	[Header and Footer Scripts](https://wordpress.org/plugins/header-and-footer-scripts/) (place <script> code here)




### Instructions

#### 1. Connecting two stores to a single wallet

In your BTCPay Server, create two separate stores:


	Store for WooCommerce


	Store for Crowdfunding app




Add the same extended public key derivation scheme, so that both stores remain in sync.

#### 2. Modifying CSS in WordPress

In the first step, you need to remove all the redundancies from the WordPress store and make it clean and simple, so that it embeds smoothly into the crowdfund app.

Place the following custom CSS code into WordPress. Appearance > Customize > Custom CSS


	<details>
	<summary>Click to view CSS</summary>





CSS file:
```css
#header,
#masthead,
.site-footer,
.storefront-breadcrumb,
.storefront-sorting,
.storefront-product-section .section-title,
.woocommerce-products-header,
.woocommerce-additional-fields,
.woocommerce-form-coupon-toggle,
.woocommerce-breadcrumb,
.related.products {

display: none;

}

	.iframe {
	overflow: hidden;

}

	ul.products li.product .button {
	margin-bottom: .236em;
display: block;

}

	.product:hover{
	background-color:rgba(0,0,255,0.3);
color:rgba(0,0,0,0);
padding-bottom:45px;

}

	.product:hover a *{
	visibility:hidden;

}

	.product:hover a.add_to_cart_button{
	position: absolute;
top: 0;
left: 0px;
width: 100%;
height: 100%;
padding-top: 50%;
color: white;
background-color:rgba(0,0,255,0.3);

}

	.product:hover a.add_to_cart_button:hover{
	background-color:rgba(0,0,255,0.5);

}

</details>

The code above removes and hides all the unnecessary things from your store (headers, footers, breadcrumbs, and sorting). If you’re not using the Storefront theme, you may need to modify it slightly. Besides removing, the bottom part of the code adds a bit of different styling which improves the checkout experience and makes it more KickStarter like. Feel free to modify colors. You should also remove the sidebar.

To remove the redundant fields in WooCommerce checkout, use [Flexible Checkout Fields](https://wordpress.org/plugins/flexible-checkout-fields/).

To speed up the checkout process use [WooCommerce Direct Checkout](https://wordpress.org/plugins/woocommerce-direct-checkout/) (remove redundant steps in the checkout process and make pledging quicker)

2. Modifing WordPress functions

Insert the following code at the bottom of your child theme’s functions.php file.

```php
// Code goes in theme functions.php
add_action( ‘after_setup_theme’, ‘wc_remove_frame_options_header’, 11 );

// Allow rendering of checkout and account pages in iframes
function wc_remove_frame_options_header() {


remove_action( ‘template_redirect’, ‘wc_send_frame_options_header’ );






}

If you add the php code directly into Appearance>Editor>functions.php, next time you update the theme, the changes will be wiped. So, use either use a custom function plugin of some sort, or [create a child theme](https://docs.woocommerce.com/document/set-up-and-use-a-child-theme/) and always place the code at the bottom.

#### 3. Adding script to WordPress

Install [Header and Footer Scripts](https://wordpress.org/plugins/header-and-footer-scripts/) plugin. Add the following code to your header or footer. Settings > Headers and Footers Script, paste the code and save changes.

```html
<script>

	jQuery(document).ready(function() {
	
	jQuery(“.product”).each(function(){
	var product = jQuery(this);
var item = product.find(“.woocommerce-loop-product__link”);
var cartLink = product.find(“.add_to_cart_button”).attr(“href”);
item.attr(“href”, cartLink);

});

});

</script>
```

This piece of code makes sure that each click on the product area adds it to cart and prevents users from viewing product description, which is completely unnecessary for our use-case.

#### 4. Modifying the Crowdfunding app

In your BTCPay, Apps > Create New App > Crowdfunding.

In the description of your app, toggle the code and paste the following code and add <iframe src=”http://yourdomain/shop/”></iframe>
Replace it with the URL of your WooCommerce Store page.

![EmbedIframeCrowdfund](../img/CrowdfundCodeEmbed.png)

Next, paste the following code into the Custom CSS Code section of your crowdfunding app:


	<details>
	<summary>Click to view CSS</summary>





CSS file:

```css
#crowdfund-body-header-tagline-container,
#crowdfund-body-description-container {

max-width: 100% !important;
width: 100% !important;
flex: 100%;

}

	#crowdfund-body-contribution-container {
	display: none;

}

	#crowdfund-body-header-cta {
	display: none;

}

	#crowdfund-body-description-container iframe {
	width:100%;
border:0;
min-height:500px;

}
/* // Medium devices (tablets, 768px and up) */
@media (min-width: 768px) {

	#crowdfund-body-description-container{
	padding-right: 30%;
min-height:1200px;

}
#crowdfund-body-description-container iframe {

width:30%;
position: absolute;
right: 0;
top:0;
height: 100%;
border-left: 1px #e5e5e5 solid;

}

}

</details>

One final thing, make sure to check (enable) Count all invoices created on the store as part of the crowdfunding goal
Save the changes and preview the app.

 # Deployment FAQ

This document covers the most common questions, errors, and issues you may encounter prior and during the installation of the software. For a detailed list of deployment methods and instructions for each, please see [Deployment page](../Deployment/README.md).

[[toc]]

General Deployment

How much does it cost to run BTCPay Server?

BTCPay is a 100% free and open-source software. We do not charge you anything.
However, to run it, you should host it. You can run it as a self-hosted solution on your own local server, or use a cloud hosting provider, which is what a majority of users do. Advanced users can run BTCPay on [their own hardware](/Deployment/Hardware.md). Less technical users can use [Hardware As A Service options](/Deployment/HardwareAsAService.md). If you do not wish to host your own server, you can use a free [Third-Party Host](/Deployment/ThirdPartyHosting.md). Visit our [Deployment Page](/Deployment/README.md) for more information on the various ways in which you can run BTCPay.

What are the minimal requirements for BTCPay?

If you would like to run Bitcoin and Lightning Network nodes, the minimal requirements are :

	2GB Ram

	80 GB of storage [with enabled pruning](../Docker/README.md#generated-docker-compose)

	Docker

What is the easiest method to deploy a self-hosted BTCPay Server?

For beginners, we strongly recommend the [web-deployment](/Deployment/LunaNode.md) if you want a self-hosted solution or a [third-party host](/Deployment/ThirdPartyHosting.md).

If you’re going to add more than one crypto coin, you need to expand the storage according to that coin(s) blockchain size.

How to choose a proper deployment method?

Please see the [Deployment page](/Deployment/README.md) for comparison of different installation methods and choose the one that suits your needs and skill level the most.

Can I run BTCPay on my own hardware?

Yes, you can. Check our the [Hardware Deployment page](/Deployment/Hardware.md) for detailed instructions.

Can I deploy BTCPay on my existing VPS?

Yes. BTCPay is not limited to the documented deployment methods. You can use whichever hosting solution you prefer, that fits the minimal requirements.

Are there free hosts where I can test?

On a self-hosted BTCPay, an unlimited amount of users and stores can be attached. Some community users have open registration on their servers for others to use their BTCPay Server mainly for testing and learning. Most of them are community-driven and free. See the [third-party hosts documentation](/Deployment/ThirdPartyHosting.md) for more information.

After initial deployment, I can’t register and I don’t have a login yet?

When you deploy your BTCPay Server, you should first register a user (during server synchronization). This user is automatically the server admin. If your BTCPay only shows Login in the header menu, and you are unable to register the first user after initial deployment, someone else has registered on your server as the admin. Although this is unlikely to occur (the user would need to know and watch your BTCPay domain name), they had access to your ssh private keys, thus you should redeploy a new server for security reasons.

How do I activate Tor on my BTCPay Server?

Tor is activated by default on the docker deployment.

How do I disable Tor on my BTCPay Server?

That’s really easy: just log in your instance with SSH, and enter as root the enter following commands:

`bash
BTCPAYGEN_EXCLUDE_FRAGMENTS="$BTCPAYGEN_EXCLUDE_FRAGMENTS;opt-add-tor"
. btcpay-setup.sh -i
`

Then wait a few minutes for the server to restart, and you’re done!

Why activate Tor? Does it mean that nobody knows who I am?

Tor for BTCPay server is intended more as an improvement of the setup process, and allows for more flexibility for hosting on one’s own device at home or in an office.

Having Tor activated would allow for simpler, plug-and-play usage of BTCPay, as it suppress the need for the following configuration steps:

	Opening multiple ports on the firewall

	Configuring the NAT for port redirection to your device on your local network

	Setting up a DNS entry to get a HTTPS certificate

	Having a fixed IP for Lightning

While these steps are usually not a problem when BTCPay is hosted on a VPS, it can be difficult to solve for non-technical users on home or office networks.

Tor just solves all these issues in one shot, all you have to do is plug your device on the local network. It is especially useful for POS application.

But if you’re looking for perfect privacy and security, activating Tor with your BTCPay just won’t do it.

Tor is a really tricky software to use for developers, as the slightest mistake can tear down the anonymity it provides. As BTCPay is evolving into a rather complex service and adding more and more plugins, even if we tried to route all this traffic through Tor, we couldn’t guarantee that there would never be leaks of data in clear.

We think that the illusion of security is more dangerous that no security, or at least security we know is imperfect. So be aware that activating Tor doesn’t prevent others to connect to your instance website, your bitcoin or lightning node in clear, it doesn’t make you anonymous at all.

If you want to know more about the philosophy behind all this, you can read our [article on Medium](https://medium.com/@BtcpayServer/about-tor-and-btcpay-server-2ec1e4bd5e51).

How to access the .onion address without clearnet?

To see the .onion address of your BTCPay instance without accessing it through the clearnet and clicking the Tor logo in top left corner, apply the following command:

`bash
cat /var/lib/docker/volumes/generated_tor_servicesdir/_data/BTCPayServer/hostname
`

How can I modify or deactivate environment variables?

In BTCPay, various options are activated through environment variables. You can modify or delete any of these options using command lines by exporting the new value with export {environment variable}=”{value}” and then running . ./btcpay-setup.sh -i again.

For example, let’s say I want to deactivate Tor for my BTCPay server:

```bash
# Login as root
sudo su -

# Go to the root/btcpayserver-docker directory
cd /root/btcpayserver-docker

# Print the complete list of options that you are running (for the sake of the demonstration, let’s say that besides Tor you have pruning mode activated too)
echo $BTCPAYGEN_ADDITIONAL_FRAGMENTS
opt-save-storage-s;opt-add-tor

# Export the BTCPAYGEN_ADDITIONAL_FRAGMENTS variable without opt-add-tor
export BTCPAYGEN_ADDITIONAL_FRAGMENTS=”opt-save-storage-s”

# Run btcpay-setup.sh
. btcpay-setup.sh -i

exit
```

Similarly if you are adding an environment variable, the export command would instead look like this:
`bash
Enable Tor in addition to your existing environment variables (such as pruning)
export BTCPAYGEN_ADDITIONAL_FRAGMENTS="$BTCPAYGEN_ADDITIONAL_FRAGMENTS;opt-add-tor"
`

If you need to figure out which environment variable you need to modify, have a look at [this list](https://github.com/btcpayserver/btcpayserver-docker#environment-variables).

How can I run BTCPay on testnet?

Building on the section above, this is how you configure BTCPay to use testnet instead of the default mainnet:

```bash
# Export the NBITCOIN_NETWORK variable switching to testnet
export NBITCOIN_NETWORK=”testnet”

# Run btcpay-setup.sh for the change to take effect
. btcpay-setup.sh -i
```

If you just want to test things quickly without deploying everything yourself, have a look at the [Try It Out](../TryItOut.md) section.
It provides links and explanations for a BTCPay testnet instance hosted by us.

Can I start BTCPay only when I’m expecting a payment?

No, you need to keep your BTCPay running at all times so that your Bitcoin node stays in sync with the blockchain to verify transactions. If you only start it up every now and then, it would take a long time to catch up on verifying recent blocks, and your payments would not show up until much later.

Can I connect to my BTCPay Bitcoin P2P on port 8333?

BTCPay’s Bitcoin core node is not exposed externally by default. For BTCPay purposes, it is typically not in the interest of the user, as it increases the bandwidth requirement. BTCPay is also whitebinding connections to this port, so opening it would expose the node to potential DDoS.

However, we expose a P2P connection to your full node on Tor. You can get the Tor address by running:

`bash
cat /var/lib/docker/volumes/generated_tor_servicesdir/_data/BTC-P2P/hostname
`

Or via the Server Settings of your BTCPay Server instance, logged as an administrator.

Please do not share this tor hidden service with untrusted parties. Connections to this hidden service are whitelisted by the bitcoin node, malicious peer would be able to DDoS your node.

If you need to unsafely expose bitcoind P2P port 8333 (for example if you require P2P for Bisq, DOJO, Esplora, etc.) and you are using a docker deployment, you can use the [opt-unsafe-expose](https://docs.btcpayserver.org/Docker/#generated-docker-compose) additional fragment.

:::danger WARNING
ONLY USE ON TRUSTED LAN OR WITH FIREWALL RULES WHITELISTING SPECIFIC HOSTS
::

How can I renew my SSL certificate?

If your SSL certificate has expired for your BTCPay Server, you can manually renew it. For Docker deployments the easiest way to do this is to [restart the container](../Troubleshooting.md#1-3-restarting-a-service) named letsencrypt-nginx-proxy-companion on your server.

Can I use an existing Nginx server as a reverse proxy with SSL termination?

Yes you can! Just make sure to use the proper configuration.

Create an extra config file for your vhost in /etc/nginx/sites-available/btcpayserver and create a symlink for this file at /etc/nginx/sites-enabled/btcpayserver

The contents of this vhost file should look like this:

```nginx
server {


listen 80;

root /var/www/html;
index index.html index.htm index.nginx-debian.html;

# Put your domain name here
server_name btcpay.domain.com;

# Needed for Let’s Encrypt verification
location ~ /.well-known {


allow all;




}

# Force HTTP to HTTPS
location / {


return 301 https://$http_host$request_uri;




}




}


	server {
	listen 443 ssl http2;

ssl on;

# SSL certificate by Let’s Encrypt in this Nginx (not using Let’s Encyrpt that came with BTCPay Server Docker)
ssl_certificate      /etc/letsencrypt/live/btcpay.domain.com/fullchain.pem;
ssl_certificate_key  /etc/letsencrypt/live/btcpay.domain.com/privkey.pem;

root /var/www/html;
index index.html index.htm index.nginx-debian.html;

# Put your domain name here
server_name btcpay.domain.com;

# Route everything to the real BTCPay server
location / {


# URL of BTCPay Server (i.e. a Docker installation with REVERSEPROXY_HTTP_PORT set to 10080)
proxy_pass http://127.0.0.1:10080;

proxy_set_header Host $http_host;
proxy_set_header X-Forwarded-Proto $scheme;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

# For websockets (used by Ledger hardware wallets)
proxy_set_header Upgrade $http_upgrade;




}

# Needed for Let’s Encrypt verification
location ~ /.well-known {


allow all;




}





}

```

Also, put the following in your main Nginx config file at /etc/nginx/nginx.conf:

```nginx
http {


# … # Existing stuff

# Needed to allow very long URLs to prevent issues while signing PSBTs
server_names_hash_bucket_size 128;
proxy_buffer_size          128k;
proxy_buffers              4 256k;
proxy_busy_buffers_size    256k;
client_header_buffer_size 500k;
large_client_header_buffers 4 500k;
http2_max_field_size       500k;
http2_max_header_size      500k;

# Needed websocket support (used by Ledger hardware wallets)
map $http_upgrade $connection_upgrade {
default upgrade;
‘’      close;
}





}

Now test your Nginx config with service nginx configtest and reload the config with service nginx reload.

Then, you need to make sure that BTCPayServer does not try to handle HTTPS on its side, you can do this by disabling it on your BTCPayServer instance.

`bash
BTCPAYGEN_EXCLUDE_FRAGMENTS="$BTCPAYGEN_EXCLUDE_FRAGMENTS;nginx-https"
. btcpay-setup.sh -i
`

Notice: If your BTCPay Server install has more than one domain (for example WOOCOMMERCE_HOST or BTCPAY_ADDITIONAL_HOSTS) you will need to modify your config for each domain name. The example above only covers 1 domain name called btcpay.domain.com.

## Web-deployment

Here you can find common questions and solutions to BTCPay web-deployments.

### Can I run BTCPay on my home computer?

Similar to the requirements for hosting a website, a web server is required for a BTCPay Server instance. While it is possible to run BTCPay Server locally on your PC, it would have to meet the minimal requirements and also run 24/7 if you don’t want interruptions of service. You might also not want to expose your home IP address for the activity related to BTCPay Server payments. For all these reasons, while local hosting is suitable for testing, it’s not a viable solution for production. A Virtual Private Server (VPS) is commonly used to address these problems.

### LunaNode web-deployment

#### How to change domain name on my LunaNode BTCPay?


	In your LunaNode dashboard, click on Virtual Machines > Your Virtual Machine > General Tab > External IP. Copy the external IP.


	Go to your DNS provider and create an A record. Paste the external IP.


	Go to Server Settings > Maintenance > Change Domain. Paste yourdomain.com without http or https prefix.




Additional documentation can be found on [domain change page](/Deployment/ChangeDomain.md).

## Manual Deployment

#### How to manually install BTCPay on Ubuntu 18.04?

Check this [community guide](https://freedomnode.com/blog/114/how-to-setup-btc-and-lightning-payment-gateway-with-btcpayserver-on-linux-manual-install).

### How do I completely uninstall BTCPay from a linux environment (docker version)


	Shutdown BTCPay Server (after you ensure you have required backups etc) with btcpay-down.sh and cleanup the install with btcpay-clean.sh.


	Change to your Base install directory cd “$(dirname “$BTCPAY_ENV_FILE”)”


	Delete all volumes in /var/lib/docker/volumes/ with docker-compose -f $BTCPAY_DOCKER_COMPOSE down –v


	Remove other BTCPay system files with this: rm /etc/systemd/system/btcpayserver.service && rm /etc/profile.d/btcpay-env.sh




5. Go into /usr/local/bin and remove all of the symlinks that BTCPay put in there.  At the time of writing these were:
`
bitcoin-cli.sh -> /root/BTCPayServer/btcpayserver-docker/bitcoin-cli.sh
bitcoin-lncli.sh -> /root/BTCPayServer/btcpayserver-docker/bitcoin-lncli.sh
btcpay-admin.sh -> /root/BTCPayServer/btcpayserver-docker/btcpay-admin.sh
btcpay-clean.sh -> /root/BTCPayServer/btcpayserver-docker/btcpay-clean.sh
btcpay-down.sh -> /root/BTCPayServer/btcpayserver-docker/btcpay-down.sh
btcpay-restart.sh -> /root/BTCPayServer/btcpayserver-docker/btcpay-restart.sh
btcpay-setup.sh -> /root/BTCPayServer/btcpayserver-docker/btcpay-setup.sh
btcpay-up.sh -> /root/BTCPayServer/btcpayserver-docker/btcpay-up.sh
btcpay-update.sh -> /root/BTCPayServer/btcpayserver-docker/btcpay-update.sh
changedomain.sh -> /root/BTCPayServer/btcpayserver-docker/changedomain.sh
`
6. Remove your BTCPay installation folder with rm -r “$(dirname “$BTCPAY_ENV_FILE”)”
7. Just to make sure, run docker system prune after a reboot to get rid of any other docker related artifacts.

### How to deploy BTCPay Server alongside existing Bitcoin node?

The instructions below are valid for Docker deployments:


	Run setup as described in [btcpayserver-docker](https://github.com/btcpayserver/btcpayserver-docker#full-installation-for-technical-users) up until . ./btcpay-setup.sh -i


	Create bitcoin.custom.yml in the docker-compose-generator/docker-fragments/ folder.




```yml
version: “3”

	services:
	
	btcpayserver:
	
	environment:
	BTCPAY_CHAINS: “btc”
BTCPAY_BTCEXPLORERURL: http://nbxplorer:32838/

	nbxplorer:
	
	environment:
	NBXPLORER_CHAINS: “btc”
NBXPLORER_BTCRPCURL: http://host.docker.internal:43782/
NBXPLORER_BTCRPCUSER: “rpc-username”
NBXPLORER_BTCRPCPASSWORD: “rpc-password”
NBXPLORER_BTCNODEENDPOINT: host.docker.internal:39388

	volumes:
	
	“localBitcoinfolder:/root/.bitcoin”


```


	Replace: 43782 with your bitcoin node’s configured RPC port


	Replace: rpc-username with your bitcoin node’s configured RPC username


	Replace: rpc-password with your bitcoin node’s configured RPC password


	Replace: 39388 with your bitcoin node’s configured p2p port


	Replace localBitcoinfolder with the path to your bitcoin data folder




If you are running on linux, due to [a limitation of docker](https://github.com/docker/for-linux/issues/264), you will also need to do the following:


	Run ip route | grep docker0 | awk ‘{print $9}’
* Add the following at the end of the bitcoin.custom.yml file, replacing $DOCKER_HOST_IP with the result of the previous command.





	```yml
	
	extra_hosts:
	
	“host.docker.internal:$DOCKER_HOST_IP”


```


	Run BTCPAYGEN_EXCLUDE_FRAGMENTS=”bitcoin”


	Run BTCPAYGEN_ADDITIONAL_FRAGMENTS=”$BTCPAYGEN_ADDITIONAL_FRAGMENTS”


	Run . ./btcpay-setup.sh -i




If you are looking for how to deploy alongside existing Lightning node [see this](./LightningNetwork.md#can-i-use-my-existing-ln-node-with-btcpay).

### With the docker deployment, how to use a different volume for the data?

First, you need to make sure that btcpayserver and docker is not running

`bash
sudo su -
btcpay-down.sh
systemctl stop docker
`

Now, you need to format your drive. If you have already done it, you can skip this step.

```bash
Step 1: Unplug the drive
lsblk

Step 2: Plug the drive
lsblk
```

The second lsblk should show the drive you just plugged in. (of TYPE disk)
Make sure you don’t make a mistake as the next command will erase all data on this disk.

For the sake of the example, let’s suppose it has the NAME /dev/sdd.

`bash
# Save the name in a variable
DEVICE_NAME="/dev/sdd"
# Set the partition name
PARTITION_NAME="/dev/sdd1"
`

Now we can partition the disk and format the partition:
```bash
echo “Partitioning the external drive $DEVICE_NAME…”
DANGER ZONE
(

echo o # Create a new empty DOS partition table
echo n # Add a new partition
echo p # Primary partition
echo 1 # Partition number
echo # First sector (Accept default: 1)
echo # Last sector (Accept default: varies)
echo w # Write changes

) | fdisk ${DEVICE_NAME}
partprobe ${DEVICE_NAME}
while ! lsblk $PARTITION_NAME &> /dev/null; do

sleep 1

done
mkfs.ext4 -F “$PARTITION_NAME”
```

Then we need to mount the partition on the linux filesystem.

```bash
Mounting the partition
MOUNT_DIR=”/mnt/external”
mkdir “$MOUNT_DIR”
mount -o defaults,noatime “$PARTITION_NAME” “$MOUNT_DIR”

Make sure the partition exists at the next reboot, we use UUID in case
the partition name is different in the next reboot
if ! grep -qF “$MOUNT_DIR” /etc/fstab; then

UUID=”$(sudo blkid -s UUID -o value $PARTITION_NAME)”
echo “UUID=$UUID $MOUNT_DIR ext4 defaults,noatime,nofail 0 2” >> /etc/fstab

fi

Then, we need to make sure that docker not start before the mount.

```bash
MOUNT_UNIT=”$(systemd-escape –path “$MOUNT_DIR”).mount”
docker_service=”/lib/systemd/system/docker.service”
if ! grep -qF “After=$MOUNT_UNIT” “$docker_service”; then


sed -i “s/After=/After=$MOUNT_UNIT /g” “$docker_service”






fi

Now, imagine you want to put all the docker volume data on the previous partition

```bash
DOCKER_VOLUMES=”/var/lib/docker/volumes”
Copy all the data from our volume to the mount directory (this can take a while)
cp -a -r “$DOCKER_VOLUMES/.” “$MOUNT_DIR”
Make the folder a mountpoint
rm -rf “$DOCKER_VOLUMES”
mkdir -p “$DOCKER_VOLUMES”
mount –bind “$MOUNT_DIR” “$DOCKER_VOLUMES”
Make sure the mountpoint is mounted after reboot
if ! grep -qF “$DOCKER_VOLUMES” /etc/fstab; then

echo “$MOUNT_DIR $DOCKER_VOLUMES none bind,nobootwait 0 2” >> /etc/fstab

fi

Now restart docker and btcpayserver

`bash
systemctl start docker
btcpay-up.sh
`

Note: We use mount bind instead of symbolic link because docker would complain when running docker volume rm.

I get 503 Service Temporarily Unavailable nginx

Cause 1: Trying to access my BTCPay by IP address

Your nginx config is set to route the HTTP request to a particular container based on the domain name of the request. For example, the official [deployment on pi 4](/Deployment/RPi4.md) was to setup the souce domain name to http://raspberrypi.local/ yet getting automatic local domain raspberrypi.local does not always work. You are probably in this situation and trying to type the IP address of your BTCPay into the web-browser.

Since nginx gets the IP address in the request instead of raspberrypi.local it does not know where to route that request and returns:
`
503 Service Temporarily Unavailable

nginx
`

You can fix this by forcing nginx to route the HTTP request to BTCPay even if the request domain name is not recognized.
Simply, re-run the setup script like this:

```bash
sudo su -

REVERSEPROXY_DEFAULT_HOST=”$BTCPAY_HOST” && . btcpay-setup.sh -i
```

Now putting local IP in the web-browser works.

Cause 2: btcpayserver or letsencrypt-nginx-proxy is not running

To check, run:

`bash
sudo docker ps | less -S
`

Press “q” to quit out of less.

The output should contain:
* btcpayserver/letsencrypt-nginx-proxy-companion
* btcpayserver/btcpayserver

And the status should be “Up”

If the docker container is not running, then check the reason for crash like this:


	```bash
	sudo  docker logs 6a6b9fd75692 –tail 20





```

Where 6a6b9fd75692 is the container ID that is having issues.

Cause 3: BTCPay is expecting you to access this website from

You might also see the following error: You access BTCPay Server over an unsecured network.

You might see this error on the front page of your BTCPay Server since version 1.0.3.73.

This is caused by a breaking change made in BTCPay to be able to handle different domain on the same server.

It happens because your BTCPay Server is not exposed directly on internet, instead a reverse proxy (like nginx or IIS) receive the request and forward it to BTCPay Server.

Sadly, depending on the configuration of your reverse proxy, either the HTTP HOST header has been replaced, or the reverse proxy did not forwarded the protocol at the front with the http header X-Forwarded-Proto.

If you use NGinx, here is what you need to have at the top level in /etc/nginx/conf.d/default.conf:

```nginx
map $http_x_forwarded_proto $proxy_x_forwarded_proto {


default $http_x_forwarded_proto;
‘’      $scheme;




}
proxy_set_header Host $http_host;
proxy_set_header X-Forwarded-Proto $proxy_x_forwarded_proto;

server_names_hash_bucket_size 128;
proxy_buffer_size          128k;
proxy_buffers              4 256k;
proxy_busy_buffers_size    256k;
client_header_buffer_size 500k;
large_client_header_buffers 4 500k;
http2_max_field_size       500k;
http2_max_header_size      500k;
```

If your reverse proxy is Apache 2, you need to set those two settings

```
<VirtualHost *:443>


RequestHeader set X-Forwarded-Proto “https”
ProxyPreserveHost on




…
</VirtualHost>
```

You will also need those settings in the apache2.conf to prevent issues while signing PSBTs.

`
LimitRequestLine 500000
LimitRequestFieldSize 500000
`

Cause 4: Getting 500 nginx error on a local server https and for http BTCPay is expecting you to access this website from

You need to open port 80 and 443. Once you did that, restart docker btcpay-restart.sh

Cause 5: Other

There could be many causes for 5XX HTTP errors. Please create an [Issue](https://github.com/btcpayserver/btcpayserver-docker/issues) and when cause becomes known add it here in the [Deployment FAQ](/FAQ/Deployment.md) doc.

 —
tags:
- refund
- merchant refund
—
General FAQ

This page contains general questions and answers about BTCPay Server. What it is, how it works, how to install it.

[[toc]]

What is BTCPay Server?

BTCPay Server is a free and open-source cryptocurrency payment processor which allows you to receive payments in Bitcoin (on-chain and via the Lightning Network) and altcoins directly, with no fees, transaction cost or a middleman.

BTCPay is a non-custodial invoicing system which eliminates the involvement of a third-party. Payments with BTCPay go directly to your wallet, which increases the privacy and security. Your private keys are never required to receive payments to your BTCPay Server. There is [no address re-use](#how-does-btcpay-create-a-new-address-for-each-invoice) since each invoice uses a new address for receiving payments to your wallet.

Why should I choose BTCPay over other processors?

The most significant advantage of BTCPay over other processors is that it is entirely free and open-source, non-custodial software, created by the community. While most of the other processors hold your Bitcoins, BTCPay allows you to receive payments P2P, directly to your software or hardware wallet.

BTCPay is a self-hosted software. This means that you are your own payment processor. There are no subscriptions, no transaction fees. There’s no third-party involvement which significantly increases the censorship-resistance, privacy, and security for you and your customers. Furthermore, BTCPay enables you to become a processor yourself, so that you can offer different packages and help spread the adoption locally or globally.

With BTCPay, you are your own bank.

Why is everyone so excited about BTCPay?

The community is excited about BTCPay and often recommends it to merchants or content creators because it offers a direct way for store-owners and charities to receive Bitcoin payments, which significantly improves the privacy of the customers/donors.

BTCPay doesn’t compromise on censorship-resistance, which is one of the main features of Bitcoin. Besides that, being free and open-source it gives an excellent opportunity for developers to build things and integrations on top of BTCPay.

Who can use BTCPay?

BTCPay server is a feature-rich software with plenty of use-cases that can solve problems for different types of users. Merchants, content creators, lightning network users, exchanges, hosting providers and many others can find it useful. See the [Use Case page](../UseCase.md) for detailed breakdown of BTCPay use-cases.

BTCPay is licensed under the [MIT License](https://github.com/btcpayserver/btcpayserver/blob/master/LICENSE).

How to install BTCPay Server?

First take a look at the various deployment options and consider which one best suits your specific needs.

	[See all deployments](/Deployment/README.md)

If you still have questions, visit the [Deployment FAQ](/FAQ/Deployment.md)

Where to find BTCPay video tutorials?

BTCPay Server instructional video guides can be found on the official BTCPay Server YouTube channel:

	[BTCPay YouTube channel](https://www.youtube.com/channel/UCpG9WL6TJuoNfFVkaDMp9ug/videos)

	[Assorted playlist of all BTCPay YouTube videos](https://www.youtube.com/playlist?list=PL7b9Wt9shK2r-WXS6ysG4tafVQRu80biZ)

Do I need to have an online store to use BTCPay Server?

You can use BTCPay even if you don’t have an e-commerce store. You can launch your BTCPay Server and be the payment processor for your friends or local market. Another use-case is to accept donations through the POS (Point of Sale) app or payment buttons which can be copy-pasted as HTML snippets into any website.

If you do not have a store, but want to create one, read [How to Create an Online Store & Accept Bitcoin – Step By Step Guide](https://bitcoinshirt.co/how-to-create-store-accept-bitcoin/) which teaches you how to build a store from scratch and install BTCPay.

Why can’t I just give my Bitcoin address to a buyer?

Re-using an address for receiving payments is a privacy issue. Providing a different address manually to each customer is not an optimal solution. Imagine having to send a unique e-mail to everyone that wants to pay you with cryptocurrency.

BTCPay solves the address re-use issue. It automates the checkout process for the merchant by creating a new invoice with a unique address created from the merchant’s wallet, each time a customer pays using BTCPay. If you are using an integration with an e-commerce store, BTCPay Server integrates into your checkout process, and customers can pay you in Bitcoin or altcoins in a few clicks, just like any other traditional payment option.

After a customer makes a payment, the BTCPay Server software notifies your store that the order has been paid/completed. Depending on the e-commerce software you’re using, it can also change the order status. All you have to worry about is getting items shipped, leave the invoicing and payment processing to BTCPay.

How does BTCPay create a new address for each invoice?

BTCPay Server includes an important feature which eliminates the known privacy issue of address re-use. It does this by providing a new address each time an invoice is requested for payment. This is all done automatically and the merchant does not need to keep track of which addresses belong to which wallet, store, etc. BTCPay Server organizes all the payment information in a detailed invoicing system for the merchant.

The way it works is fairly simple. Merchants connect a wallet to each of their stores that they want to receive payments to. The invoices produced for store payments are linked directly to the merchant’s connected wallet. The invoice addresses are derived from the [xpubkey](https://bitcointalk.org/index.php?topic=2828777.0) of the wallet associated with the store. The software only needs your extended public key of a wallet to produce new addresses for each payment. These addresses are monitored by BTCPay Server as they move through the blockchain. The status of the payments to those addresses are detailed in the merchant’s invoice page for each store.

Does BTCPay need my private key?

Private keys are not required for using BTCPay with an existing wallet. The fact that BTCPay Server does not require access to your master private key for on-chain transactions is a huge security advantage. Even if your server gets hacked, your funds from the on-chain transactions are always safe. Securing your on-chain funds comes down to [securing your wallet](https://btcinformation.org/en/secure-your-wallet). Using an [existing wallet with BTCPay Server](../WalletSetup.md#use-an-existing-wallet) only requires the public key from your wallet.

It is possible to generate new wallets using BTCPay Server which are hot wallets stored on the server. If you have a lightning node, BTCPay technically has access to the keys (macaroons) of your Lightning funds as well. If these are features that you would like to use, be sure to understand the [security implications and the risks](../CreateWallet.md#security-implications) associated with these experimental features.

If you’re using a Third-Party BTCPay host, you should be familiar with the [security concerns](../Deployment/ThirdPartyHosting.md#security-concerns) associated with private keys.

Does BTCPay Server support crypto to fiat conversion?

At this time, it is possible to do automated conversions using the BTCPay Server plugin called [BTCTransmuter](https://github.com/btcpayserver/btcTransmuter). Please note this software is currently in alpha state.

What if I have a problem paying an invoice?

If you have an issue paying a BTCPay Server invoice, it is likely do to one of the following reasons:

	You are trying to pay using a non-segwit wallet and the merchant’s invoices use Bech32 format.

This is a fairly common issue but can be confusing to the user who will likely receive wallet errors similar to invalid address when making a payment to an invoice. The solution for this (by the customer) is to use a [SegWit compatible wallet](https://en.bitcoin.it/wiki/Bech32_adoption) which supports sending to Bech32 addresses.

The solution for this (by the merchant) is to modify your extended public key (xPub) you are providing in your BTCPay Server store. To do this, you can append your xPub with -[p2sh] which will automatically modify your invoice addresses to allow both SegWit and non-SegWit wallets to make payments to your addresses. The BTCPay Server wallet will do this by wrapping the xPub’s addresses with a Pay to Script Hash (p2sh) which produces more widely accepted addresses. It’s important to understand how this can affect your wallet and the payments received before and after implementing this solution in your BTCPay Server store. Modifying your store’s xPub will generate an entirely new wallet from the perspective of your BTCPay Server store. Please understand the following before blindly implementing the solution:

	
	If you are using a hot wallet generated by your BTCPay Server, modifying the xpub will not create new seed words and your previous hot wallet seed words will no longer be stored on the server.
	
	As a result, you will not be able to spend your new funds. Instead, create a new store and a new BTCPay Server hot wallet and select the option Segwit wrapped (Compatible with old wallets) address type, and migrate funds to this new store’s wallet.)

	
	If you imported your xPub from another wallet (such as a hardware or software wallet) your external wallet will not detect the payments after modifying your xPub.
	
	As a result, you will still be able to spend the funds using your BTCPay Server internal wallet using the Hardware Wallet Integration (Vault, recommended) or by signing with seed (not recommended).

	
	Older funds and transactions which were previously displayed in your store’s wallet will not appear anymore.
	
	As a result, you may want to consider creating a second store with the modified xpub, to retain the previous transaction history of your transactions.

Learn more about xpub formats and how to modify them [here](./Wallet.md#what-is-a-derivation-scheme). If you do not understand the options listed above, ask for clarification in the [community on Mattermost](https://chat.btcpayserver.org/).

	The invoice receives payment, but it is not paid in full.

Users may try to pay an invoice from an exchange or other custodial service where part of the payment is deducted as a fee from the payment. A solution is to pay the amount due (provided that the invoice has not expired) or contact the merchant for a refund or a way to pay the remainder of payment due.

What if I have a problem with a paid invoice?

:::tip
To request a refund from a merchant, you must contact the merchant directly! BTCPay Server has no relationship to the merchant you purchased the product or service from.
::

BTCPay Server is an open-source self-hosted software stack, not a company. The community and contributors behind BTCPay Server have no control over who uses the software or how they use it.
If you paid an invoice to a merchant and have a problem with your order, you must contact the merchant directly to see what happened.

Each merchant running the software controls their own store and the connected wallets that receive funds. The BTCPay Server community does not hold or have access to any funds of a store using the BTCPay Server software, only the merchant does.

Where can I get help and support?

BTCPay is an open-source project. It is not a company; there is no e-mail, live-chat or phone support. The software relies on a network of contributors and users to provide support.

If you encountered an issue or have a feature request, please [open an issue on GitHub](https://github.com/btcpayserver/btcpayserver/issues). For more general questions, join our [community on Mattermost](https://chat.btcpayserver.org/). Certain community members offer [premium (paid) support](../Support.md).

How can I contribute to BTCPay?

There are many ways in which you can contribute to an open-source project like BTCPay.

The easiest way is to use the software, provide feedback and report any bugs or issues you or your customers encounter. If you’re a developer, you can help us develop and improve the software by contributing in any of the BTCPay Server [GitHub repositories](https://github.com/btcpayserver). Translating BTCPay into your native language on [Transifex](https://www.transifex.com/btcpayserver/btcpayserver/), helping us with documentation and writing are ways in which you can help us out, even if you’re not a developer or tech-savvy. We appreciate every contributor to the project.

Check out the [contribute section](../Contribute/README.md) for all the ways to contribute and help improve the project.

How can I use the BTCPay Server API?

The original BTCPay Server API is compatible for the most part with [BitPay’s API](https://bitpay.com/api/) to allow merchants to smoothly transition to using BTCPay if they prefer a free, open source, payment processing alternative.

In 2020, BTCPay Server started releasing a new Greenfield API. This new API will co-exist with the original API and allow full usage of all BTCPay Server features, without requiring the UI. You can view the current [Greenfield API documentation](https://docs.btcpayserver.org/API/Greenfield/v1/).

A BTCPay Server functionality that is not found in the Greenfield API documentation means it isn’t fully implemented yet in the new API and users should use the original API instead. The discussion on the development of the new Greenfield API can be found [here](https://github.com/btcpayserver/btcpayserver/issues/1320).

How can I backup my BTCPay Server?

It’s possible to [create backups of your BTCPay Server](https://docs.btcpayserver.org/Docker/#how-can-i-back-up-my-btcpay-server) instance and it’s data. Please keep in mind that the backup scripts have not been thoroughly tested for all types of BTCPay Server setups and custom deployments. Be sure to use your backup to verify it properly recreates your setup, before relying on it.

How can I charge for using my BTCPay Server instance?

Currently charging users for using your BTCPay Server instance, whether it’s a percentage of transactions or a registration fee, is not supported natively.
Enabling such a feature could be possible, using the [Transmuter](https://docs.btcpayserver.org/Transmuter/) and/or the [Greenfield API](https://docs.btcpayserver.org/API/Greenfield/v1/) but will require moderate to extensive technical knowledge.

 # Integrations FAQ

This page covers questions about BTCPay integrations.

[[toc]]

General Integrations FAQ

What e-commerce integrations are available?

	[WooCommerce](../WooCommerce.md)

	[Drupal](../Drupal.md)

	[Magento](../Magento.md)

	[PrestaShop](../PrestaShop.md)

	[Custom Integration](../CustomIntegration.md)

If you’re a developer, you can develop your own integration, by following the [custom integration instructions](../CustomIntegration.md).

How to use WooCommerce store with BTCPay?

	[BTCPay and WooCommerce](https://www.youtube.com/watch?v=tTH3nLoyTcw)

	[BTCPay WordPress plugin installation](https://www.youtube.com/watch?v=6QcTWHRKZag)

	[Connecting your store to a third-party BTCPay host](https://www.youtube.com/watch?v=IT2K8It3S3o)

	[Connect your wallet to BTCPay](https://www.youtube.com/watch?v=xX6LyQej0NQ)

	[Test your store checkout when you finish with the setup](https://www.youtube.com/watch?v=Fi3pYpzGmmo)

How to use BTCPay with Drupal?

	[BTCPay and Drupal installation and configuration](https://github.com/btcpayserver/commerce_btcpay#installation-and-configuration)

	[Drupal Commerce BTCPay module installation walkthrough](https://youtube.com/watch?v=XBZwyC2v48s)

How to use BTCPay with Prestashop?

	[Using the BTCPay plugin for Prestashop](../PrestaShop.md)

Does BTCPay have a Shopify plugin?

Yes, there is a BTCPay and Shopify integration. To get started, check out our [Shopify Integration Guide](../Shopify.md)

Can I use BTCPay without an integration?

Yes, you can. While various e-commerce CMS use integrations, you can use BTCPay even if you’re not a merchant. For more information about use-cases, see [this page](../UseCase.md)

WooCommerce FAQ

How to configure order status in WooCommerce?

Order status depends on a merchant’s business model. To better understand BTCPay order (invoice) status [read this document](../WooCommerce.md#btcpay-order-statuses).
There’s no best way to configure them without trial and error and seeing what works for your business.

How to customize e-mail confirmations in WooCommerce?

If you wish to send an e-mail after a certain status to the customer, you need to edit WooCommerce order e-mail templates. This is recommended only if you know what you’re doing. [Check out this guide](https://www.cloudways.com/blog/how-to-customize-woocommerce-order-emails/).

Error: If you use an alternative order numbering system, please see class-wc-gateway-btcpay.php to apply a search filter

If by any chance you use a different order numbering than standard in WooCommerce, the following error may appear in your BTCPay WooCommerce plugin logs:

> [Error] The BTCPay payment plugin was called to process an IPN message but could not retrieve the order details for order_id: “ON123”. If you use an alternative order numbering system, please see class-wc-gateway-btcpay.php to apply a search filter.

Paste the following code at the bottom of your child theme’s functions.php file:

	<details>
	<summary>Click to view code snippet</summary>


```php
function get_order_id_from_custom_order_style($orderid){



	if(is_string($orderid)){
	$result = preg_replace(‘~D~’, ‘’, $orderid);
return $result;





}
return $orderid;




}

add_filter(‘woocommerce_order_id_from_number’, ‘get_order_id_from_custom_order_style’, 1);
```
</details>

How to configure Additional Token Support

::: tip Note
The Wordpress and Woocommerce plugins used in this integration are neither endorsed nor have they been thoroughly verified or vetted by the BTCPay Server team. Use them at your own risks.
::

With using the additional token configuration you will be able to have separate payment methods for each configured Currency, Asset, Altcoin or Token. This means you can have separate payment methods for BTC, Lightning Network, LTC, ETH (and ERC20 tokens), Liquid assets, … you name it. This allows you to issue and use Liquid Assets as coupons or vouchers, see more details below.

Use cases
- give away products for free via promotional tokens
- allow discounts for certain payment methods (tokens)
- restrict products to certain payment methods (tokens)
- restrict payment methods (tokens) on shipping zones
- and many more, see examples below

Requirements
- all tokens you configure on the WooCommerce side need to be available in your store on BTCPay Server side
- to use promotional tokens you need to have [Liquid Assets plugin](https://github.com/btcpayserver/btcpayserver-plugins) installed on BTCPay Server

Token types
Payment tokens
Payment tokens are what is supported by BTCPay Server out of the box (BTC, Lightning Network, LTC, XMR, etc.). They are used as normal payment currency converted by the current exchange rate vs the fiat currency of your shop.

Promotional tokens (100% discount)
With the introduction of above mentioned Liquid Assets plugin you now also have the possibility to accept promotional tokens. You can think of them like coupons or vouchers that can be used to redeem a product/gift. They are special in the sense that they do not have decimals and you need to always pay 1 token per quantity of a product.

You as a store owner can [issue your own Liquid assets](https://docs.blockstream.com/liquid/developer-guide/developer-guide-index.html#issued-assets) for this purpose or accept [existing ones](https://blockstream.info/liquid/assets).

Configuration
Make sure the tokens you will configure on your WooCommerce store are available and properly configured on your BTCPay Server, otherwise you will get errors on invoice creation during the checkout process. This will change in the future when we have a new woocommerce plugin that directly fetches the needed data via the Greenfield API but for now the data needs to be entered in some comma separated value (CSV) style.

Preparation
Make sure to have the latest woocommerce plugin installed.

Setup your additional tokens
Setting: Additional token configuration
In the BTCPay payment method settings you have a new setting “Additional token configuration” where you can input the token configuration in a specific CSV format of 4 columns.

	token symbol:
Important: this needs to match the symbol on BTCPay Server, e.g. BTC,

	display name:
The visible text for the payment method on checkout

	type:
this can be “payment” or “promotion” [see explanation above](#token-types)

	token icon (optional):
url to token symbol shown during checkout (can be empty but be sure to include the quotes). You can upload the icon in media manager and copy the url or you can use a link to external site or CDN.

:::danger
Important: All the columns text needs to be enclosed by double quotes “ and separated by semicolon `; each asset has to be put in a new line.
::

Example additional token config

`
"BTC_OFFCHAIN";"Lightning BTC";"payment";""
"USDt";"USDt (Liquid Theter)";"payment";"https://example.com/wp-content/uploads/2021/01/usdt.png"
"eKr";"eKrona (Liquid Asset)";"promotion";""
`

After saving you will see each asset to be available as payment method. You can enable/disable them like any other payment method. They won’t have any settings itself for now though (everything is configured by the CSV data). But you can use them together with e.g. woocommerce payment plugins to allow discounts for certain payment methods etc.

![Each additional additional token available as payment token](../img/woocommerce/woocommerce_at_payment-methods.png)

Setting: Additional tokens: Enforce payment tokens
The default payment method of BTCPay Server (Bitcoin) will not enforce any configured Currency, Asset, Altcoin or Token. This means when you have the default payment method “Bitcoin” enabled the user can select all the configured Currency, Asset, Altcoin or Tokens (which have an exchange rate) on the BTCPay Server payment page. You may not want this but enforce/limit which payment options will be available. By selecting this checkbox only the Currency, Asset, Altcoin or Tokens of type “payment” listed in the setting [Setting: Additional token configuration](#setting-additional-token-configuration)

Common WooCommerce use-cases using the Additional Token Support feature

Use-case 1: limit product to a region/shipping zone
Free plugin used: [Country Based Restrictions for WooCommerce](https://wordpress.org/plugins/woo-product-country-base-restrictions/)
After installing and activating the plugin go to a product in “Product data” block there is a new tab “Country restrictions”. You can configure the restrictions you want there.

Example configuration:
![Product restricted to US only](../img/woocommerce/woocommerce_at_product-country-restriction.png)

Use-case 2: (Promotion) products should have free shipping
This adds the ability to offer free shipping when a customer pays with a selected Currency, Asset, Altcoin or Token.
This is doable with woocommerce out of the box (no plugins needed):

	In shipping settings add a new shipping class e.g. “free-shipping”

	On your shipping zones / shipping method config you need to make sure you set the rate to be 0 for that shipping class but also that “cost” is empty or 0. And your “no shipping class cost” is set to the normal rate (using flat-rate as example):
![Flat rate, free shipping example configuration](../img/woocommerce/woocommerce_at_free-shipping-flat-rate-config.png)

	In product settings “Product data” block you have a tab “Shipping”, there you set the above created “Free-shipping” class and it will taken care during checkout.
![Free shipping class set on product settings](../img/woocommerce/woocommerce_at_free-shipping-product-setting.png)

Use-case 3: limit product payment methods
E.g. allow only a certain Currency, Asset, Altcoin or Token to be used as payment for promotional product(s)

Free plugin used: [Conditional Payments for WooCommerce](https://wordpress.org/plugins/conditional-payments-for-woocommerce/)

This plugin provides a condition rules builder where you can enable/disable available payment methods for products. See example config in the screenshot:
![Conditional payment rules overview](../img/woocommerce/woocommerce_at_limit-payment-methods-rules.png)

Use-case 4: discount per payment method
Adds the ability to offer a discount when customer uses a selected Currency, Asset, Altcoin or Token as payment.

Free plugin used: [Discounts Per Payment Method for WooCommerce](https://wordpress.org/plugins/woo-payment-discounts/)

In the now available “Discount per Payment” setting in your WooCommerce settings you have a list of all payment methods and can give percentage or fixed discounts.

![Settings for discounts per available payment method](../img/woocommerce/woocommerce_at_payment-method-discount.png)

Use-case 5: make sure promotional products can only be purchased exclusively

This is needed because payment methods based on a selected Currency, Asset, Altcoin or Token - used as promotional token - need to override the product price with 1 (per quantity) to allow users to pay with 1 promotion token per quantity. Otherwise, a user could mix normal products with promo products during checkout and pay both with the promotional tokens, which you want to avoid.

In product settings on the right sidebar you have “Product tags” enter a new tag “promotion”

![Product edit screen promotion tag set](../img/woocommerce/woocommerce_at_product_promotion_tag.png)

Paste the following code at the bottom of your child theme’s functions.php file:

	<details>
	<summary>Click to view code snippet</summary>


```php
/**
* Check if a product is tagged with “promotion” and show a notice that it only
* can be ordered exclusively without any other products in the cart.
*/
function btcpay_check_promotion_product($valid, $product_id, $quantity) {


$promotion_tag = ‘promotion’;
// Check if there are any items in the cart.
if (!empty($cart_items = WC()->cart->get_cart()) && $valid) {


// Check if the product is a promotional product and abort.
if (has_term($promotion_tag, ‘product_tag’, $product_id)) {


wc_add_notice( ‘Promotional products can only be purchased exclusively, please remove other items from your cart first.’, ‘error’ );
return false;




}
// Also check the case where one has already a promotion product in the
// cart and also do not allow adding a normal product in that case.
foreach ($cart_items as $item) {



	if (has_term($promotion_tag, ‘product_tag’, $item[‘product_id’])) {
	wc_add_notice( ‘Promotional products can only be purchased exclusively, please proceed with checkout or remove the item first.’, ‘error’ );
return false;





}




}




}

return $valid;




}
add_filter(‘woocommerce_add_to_cart_validation’, ‘btcpay_check_promotion_product’, 10, 3);
```
</details>

Use-case 6: Limit the checkout of only 1 piece of a product
Adds the ability to limit the number of a Currency, Asset, Altcoin or Token that can be spent by a customer in a single checkout.

Useful for coupon-style promotions that are limited to one discount per checkout.

This is also solved already by WooCommerce. You can activate this on a per product level in Product settings: Tab “Inventory”:
set the checkbox [x] “Enable this to only allow one of this item to be bought in a single order”

 # Lightning Network FAQ

This document clarifies some of the most common questions and issues users face with the Lightning Network in BTCPay. Before you start using the off-chain protocol, familiarize yourself with the risks. Additionally, read [Getting Started with Lightning Network in BTCPay](../LightningNetwork.md)

[[toc]]

Lightning Network General FAQ

Here are some general questions about LN in BTCPay, regardless of the implementation.

How many users can use Lightning Network in BTCPay?

On a self-hosted server, you can use only one internal Lightning node. Server owners can use the same Lightning node for an unlimited number of stores tied to their admin account.

Since version 1.0.3.128, a BTCPay Server host can enable it’s registrants to use the internal Lightning Network node.
It can be enabled in Server Settings > Policies > Allow non-admins to use the internal lightning node in their stores.

![Enable LN for Others](../img/ThirdPartyEnableLNOthers.png)

:::warning As a third-party host
All your registrants’ funds will go to your own Lightning Wallet.
You will have to manually check and redispatch the funds to their respective owners. This could potentially become a burden.
::

:::danger As an individual using a third-party host

All payments made through the Lightning Network will go to your third-party’s wallet.
Take precautions and only use this option while using a trustworthy third-party host to ensure you get your funds back.
::

Non-admin users can also connect to their own external nodes. Lightning node external connections are a technically advanced task. We recommend that if you want Lightning, you should deploy your own server instead, which comes with all the necessities bundled up.

How to find node info and open a direct channel with a store using BTCPay?

If you’re a customer trying to pay a Lightning Network invoice:

	make sure to select “Lightning” from coin selection.

	Select Copy/Scan

	Select Node Info and scan or copy it manually.

![BTCPay Checkout](../img/btcpay-node-info.jpg)

The exact procedure of opening a direct Lightning Network channel depends on the wallet you’re using. But, you should be able to figure it out easily now that you have merchant’s node information.

As a merchant, do I need to open direct channels?

Merchants need incoming channels. Other people opening a channel with them provides liquidity to the merchant. Your customer should be able to open a direct channel with you.

You can also ask well-connected nodes to open a direct channel with you. Opening a channel is not spending funds, it’s more like putting the funds on a pre-paid card, and spending it later, or withdrawing it by closing a channel.

How can I get inbound capacity to my node?

There are many ways in which one can get an inbound capacity. We recommend that you read this great article that provides [practical tips to inbound capacity](https://medium.com/lightningto-me/practical-solutions-to-inbound-capacity-problem-in-lightning-network-60224aa13393).
When asking for inbound capacity, consider any routing policy fees the service may have. [This document](https://wiki.ion.radar.tech/tutorials/bootstrapping-liquidity) provides an overview of what kind of fees to expect from well-known nodes offering the service.

I previously installed BTCPayServer without lightning, can I enable it?

If you did not deploy your server with a lightning implementation provided, you will need to add it to your server manually. You can do this by sshing into your server, adding the lightning option and re-running the setup script. This is also the process for changing from one lightning provider to another. The instructions can be found [here](#how-to-change-from-c-lightning-to-lnd-or-vice-versa).

Once your server has restarted, you can then click on Test Connection in your you store settings to verify that you have successfully configured your lightning node.

Depending on how you deployed BTCPayServer you might have different step to do:

Case 1: You manually installed

If you installed BTCPayServer manually without docker or Azure, then you only need to start run [CLightning](https://hub.docker.com/r/nicolasdorier/clightning/) with the correct network parameter.

Assuming you are running as root, CLightning will allow call to its API via a unix socket on /root/.lightning/lightning-rpc

Once this is done, make sure you start BTCPayServer with

`bash
-btclightning=/root/.lightning/lightning-rpc
`

If you are using CLightning for Litecoin, use the parameter -ltclightning instead.

Then, make sure the port lightning network ports 9735 (BTC) and 9736 (LTC) are open on your firewalls.

Case 2: You manually installed and you are using docker (without Azure)

In this case, you only have to change the docker-compose you are using.
If before you were using docker-compose -f “$(pwd)/Production/docker-compose.btc-ltc.yml” up -d (as documented [here](https://github.com/btcpayserver/btcpayserver-docker#for-docker-noobs)), then you need to change to docker-compose -f “$(pwd)/Production/docker-compose.btc-ltc-clightning.yml” up -d.

Then, make sure the port lightning network ports 9735 (BTC) and 9736 (LTC) are open on your firewalls.

Case 3: You are using Azure

Log as root:

`bash
sudo su -
`

Run

`bash
cd $DOWNLOAD_ROOT
wget -O - https://raw.githubusercontent.com/btcpayserver/btcpayserver-azure/master/btcpay-update.sh > btcpay-update.sh
btcpay-update.sh
`

Modify the file /etc/profile.d/btcpay-env.sh:

You should have something like:

`bash
export BTCPAY_DOCKER_COMPOSE="/var/lib/waagent/custom-script/download/0/btcpayserver-docker/Production/docker-compose.btc-ltc.yml"
`

Modify by adding -clightning at the end:

`bash
export BTCPAY_DOCKER_COMPOSE="/var/lib/waagent/custom-script/download/0/btcpayserver-docker/Production/docker-compose.btc-ltc-clightning.yml"
`

Update your environment variables in current session by running:

`bash
. /etc/profile.d/btcpay-env.sh
`

Then restart your server:

`bash
btcpay-restart.sh
`

Then, connect to your [Microsoft Azure Portal](https://portal.azure.com/),
Go to the resource group of your install, and add a new security rule in the Network Security Group inside it. (See [this example](https://docs.microsoft.com/en-us/azure/virtual-network/virtual-networks-create-nsg-arm-pportal#create-rules-in-an-existing-nsg))

If your resource group do not have a Network Security Group, you can skip this step. The Network Security Group has been introduced in new Azure installs.

Add a Security Inbound Rules:

Rule 1:

	Name: LightningBTC

	Priority: 150

	Source: Internet

	Destination: Any

	Port: 9735

	Protocol: TCP

Rule 2:

	Name: LightningLTC

	Priority: 151

	Source: Internet

	Destination: Any

	Port: 9736

	Protocol: TCP

Here is how it should look like:

![SecurityRules](../img/azuresecurityrule.png)

Can I use a pruned node with LN in BTCPay?

It is recommended to use c-lightning because the implementation supports pruned nodes.

:::warning
It is possible in BTCPay to enable LND with a pruned node, however the LND implementation does not officially support it for reasons [listed here](https://github.com/lightningnetwork/lnd/blob/master/docs/safety.md#pruned-bitcoind-node). It’s not possible to use pruning with Eclair.
::

Can I use my existing LN node with BTCPay?

If you already have a well connected lightning node with sufficient inbound liquidity, you may want to use it with BTCPay instead of the included lightning node.

To do so, go to the lightning node settings page of your store (Store > Settings > Lightning > Modify). Here on the lightning node setting page, select the option for Use a custom lightning node.

The connection strings vary per lightning implementation, the [settings page](../LightningNetwork.md#connecting-an-external-lightning-node-in-btcpay) contains the documentation for the connection settings to give you further guidance.

How to change from c-lightning to LND or vice-versa?

:::warning
Be sure to have closed all channels and removed both on-chain and Lightning funds from the Lightning node before switching from one to the other.

::

You need to SSH log in into your virtual machine.

To switch to LND:

`bash
sudo su -
cd btcpayserver-docker
export BTCPAYGEN_LIGHTNING="lnd"
. ./btcpay-setup.sh -i
`

To switch to c-lightning:

`bash
sudo su -
cd btcpayserver-docker
export BTCPAYGEN_LIGHTNING="clightning"
. ./btcpay-setup.sh -i
`

I switched Lightning Network implementation, but getting “no payment available” error

When you switch from one implementation to another, you need to reconfigure your lightning connection string at a store level, to use adequate implementation. Stores > Settings > Lightning > Setup > Connection string. In connection string, click on the “click here” link.

I get “WARNING: The LIGHTNING_ALIAS variable is not set. Defaulting to a blank string” when starting container

You can ignore this.
If you want to set an alias for your lightning node, open the env file:

`bash
sudo su -
vim $BTCPAY_ENV_FILE
`

And add or modify the LIGHTNING_ALIAS entry to LIGHTNING_ALIAS=myawesomenode.

How to display my Lightning Node information so that others can connect to me?

The information other users need to connect to your node, is already displayed at the checkout. Sometimes, merchants want to display their node so that their customers can connect beforehand.

There are numerous ways to find your node information, but the easiest way to display it to others is by using Lightning Node info page. Go to Store > Settings > Lightning > Modify. At the bottom of the page, there is a “Open Public Node Page” button. Click on it to see the information. The page can be embedded into your website with <iframe>.

![BTCPay Checkout](../img/LightningNodepPageInfo.png)

Where can I find recovery seed backup for my Lightning Network wallet in BTCPay Server?

Originally BTCPay did use noseedbackup, so you couldn’t backup your LN wallet or get your recovery seed. This was because in Lightning Network there was no solution for backing up funds in channels, just in your on-chain wallet.
By now LND has functionality like static channel backup that depends on seed presence.
But once again, please understand that the Lightning Network is still in an experimental phase and do not put funds into it, which you’re not [willing to lose](https://www.youtube.com/watch?v=5fMv8MpzLgQ).

Using LND with seed (since [v1.0.3.138](https://github.com/btcpayserver/btcpayserver/releases/tag/v1.0.3.138))

You can find the LND Seed Service under:

	Server Settings > Services > LND Seed Backup

![LND Seed Backup service](../img/LND-Service-Seed-Backup.jpg)

Safely backup and store your recovery seed. The seed is a backup of your on-chain Lightning wallet, but is also necessary to perform static channel backups.

![LND Seed Backup example](../img/LND-With-Seed-Example.jpg)

If you backed it up safely you can remove it from the server.

If you migrate from an older version to v1.0.3.138 [this blog post on how to do the migration](https://blog.btcpayserver.org/btcpay-lnd-migration) might be helpful.

How to disable on-chain payments and use LN payments only?

There are two easy ways to do this:

	Store > Settings > Checkout experience > Choose default payment method at checkout

	Store > Settings > Modify > Uncheck the Enabled box to disable on-chain payments

How to see my Lightning Network version?

You can check your Lightning Network version from the command line.
For LND

`bash
sudo su -
cd btcpayserver-docker
./bitcoin-lncli.sh help
`

For c-lightning

`bash
sudo su -
./bitcoin-lightning-cli.sh getinfo
`

Most of the wallets (RTL, Zap, Spark, etc) that are able to your lightning node remotely will display the version on the front-end as well.

Lightning Network (LND) FAQ

Here are some of the common questions about the [LND implementation](https://github.com/lightningnetwork/lnd/issues) of the Lightning Network.

How to restart my LND?

`bash
sudo su -
docker restart btcpayserver_lnd_bitcoin
`

How to see LND logs?

To check the logs of your LND node in BTCPay Server (Docker installations) use the following command:

docker logs –tail 40 btcpayserver_lnd_bitcoin

You can change 40 to whatever number you wish. The number represents the lines of code that will be shown. For more information about the logs, see [Troubleshooting page](../Troubleshooting.md)

What’s the default directory of LND in BTCPay?

/var/lib/docker/volumes/generated_lnd_bitcoin_datadir/_data

Which macaroon needs to be provided for external nodes?

BTCPay Server needs the admin.macaroon to check whether the lightning node is fully synced before creating an invoice.
If you want to tailor a macaroon specific to the BTCPay Server connection, use the LND macaroon bakery:

`bash
lncli bakemacaroon address:read address:write info:read invoices:read invoices:write onchain:read
`

LND connection issues after an update

Authentication tends to fail on LND after an update, symptoms are:

	In store settings, when testing the connection to your node you get Error while connecting to the API (The HTTP status code of the response was not expected (500).)

	In Zap wallet, Unable to connect to host: cannot retrieve macaroon: cannot get macaroon: root key with id 0 doesn’t exist

In such case, you need to delete the macaroon of lnd and restart it.

If you are using docker deployment, please connect with SSH to your VM and the following command:

`bash
sudo su -
docker exec btcpayserver_lnd_bitcoin rm /data/admin.macaroon
docker exec btcpayserver_lnd_bitcoin rm /data/invoice.macaroon
docker exec btcpayserver_lnd_bitcoin rm /data/readonly.macaroon
docker exec btcpayserver_lnd_bitcoin rm /data/data/macaroons.db
docker exec btcpayserver_lnd_bitcoin rm /data/data/chain/bitcoin/mainnet/invoice.macaroon
docker exec btcpayserver_lnd_bitcoin rm /data/data/chain/bitcoin/mainnet/macaroons.db
docker exec btcpayserver_lnd_bitcoin rm /data/data/chain/bitcoin/mainnet/readonly.macaroon
docker restart btcpayserver_lnd_bitcoin
`

If a macaroon does not exist, you will see an error message, you can safely ignore it.

Because this will invalidate the previous macaroons, you need to manually reconnect with Zap with Server Settings / Services / LND-gRPC.

How to change my LND Node alias?

To change the display name of your LND node, you should ssh log in into your virtual machine and apply the following:

`bash
sudo su -
cd btcpayserver-docker
export LIGHTNING_ALIAS="namehere"
. ./btcpay-setup.sh -i
`

How to edit lnd.conf?

To customize LND settings which are not available as environment variables, you can [create a custom fragment](../Docker/README.md#how-can-i-customize-the-generated-docker-compose-file) in docker-compose-generator/docker-fragments/opt-lnd-config.custom.yml like this:

```yml
version: “3”
services:



	lnd_bitcoin:
	
	environment:
	
	LND_EXTRA_ARGS: |
	minchansize=1234567
















```

You can add your customizations in the LND_EXTRA_ARGS value, like shown by setting the minchansize value.

Afterwards the configuration has to be added to the additional fragments and setup needs to be run:

`bash
export BTCPAYGEN_ADDITIONAL_FRAGMENTS="$BTCPAYGEN_ADDITIONAL_FRAGMENTS;opt-lnd-config.custom"
. ./btcpay-setup.sh -i
`

This way your custom settings gets added to the config and they will persist updates.

How to install ThunderHub?

To install ThunderHub on your instance apply the following:

`bash
export BTCPAYGEN_ADDITIONAL_FRAGMENTS="$BTCPAYGEN_ADDITIONAL_FRAGMENTS;opt-add-thunderhub"
. btcpay-setup.sh -i
`

If you get the following warning message Unable to connect to this node it is probably because the certificate used to communicate with LND doesn’t have the correct domains. LND doesn’t generate new ones unless the previous ones are deleted first.

To delete the old certificate and key and have LND generate new ones, apply the following:

`bash
docker exec btcpayserver_lnd_bitcoin rm /data/tls.cert
docker exec btcpayserver_lnd_bitcoin rm /data/tls.key
docker restart btcpayserver_lnd_bitcoin
docker restart generated_bitcoin_thub_1
`

Lightning Network (c-lightning) FAQ

Here are some of the common questions about the [c-lightning](https://github.com/ElementsProject/lightning/issues) implementation of the Lightning Network.

How to restart my c-lightning?

`bash
sudo su -
docker restart btcpayserver_clightning_bitcoin
`

How to announce an IPv6 address?

First, copy bitcoin-clightning.yml into the the docker fragment folder as bitcoin-clightning.custom.yml.
Important: the file must end with .custom.yml, or there will be git conflicts whenever you run btcpay-update.sh.

Modify the new bitcoin-clightning.custom.yml as the following:

```yaml
services:



	clightning_bitcoin:
	
	environment:
	
	LIGHTNINGD_OPT: |
	announce-addr=[ipv6 here]
















```

Make sure to insert the address between the two square brackets [].

Then set it up:

`bash
export BTCPAYGEN_ADDITIONAL_FRAGMENTS="bitcoin-clightning.custom"
. ./btcpay-setup.sh -i
`

How to find an on-chain address in Spark?

To fund your on-chain wallet in Spark, you need to get an on-chain address. To find your address, click on the version link at the left corner bottom of the Spark wallet (for example v0.2.2).

That should toggle the settings. Click > Console. To generate a new address in RPC Console field, enter newaddr for bech32 address or newaddr p2sh-segwit click execute. At the bottom you should see the newly generated address.
You can also toggle help if you need help with other commands in Spark.

![BTCPay Checkout](../img/Spark-console1.png)
![BTCPay Checkout](../img/Spark-console2.png)

How to withdraw funds from my on-chain Spark wallet?

First if your funds are in channel, you need to close channel and wait for them to get back to your on-chain wallet in Spark. (144 blocks in most cases).

Next, you need to toggle the console mode. Click on the version link at the left corner bottom of the Spark wallet [explained above](./LightningNetwork.md#lightning-network-c-lightning-faq)

That should toggle the settings. Click > Console.

In console mode there are help commands. The command needed for withdrawing from an on-chain wallet is called withdraw.

`
withdraw destination satoshi [feerate] [minconf]
Send to {destination} address {satoshi} (or 'all') amount via Bitcoin transaction
`

If you want to withdraw 1000 sats to bc1qjl8uwezzlech793lpnyuzy0h2cdkvxvh54v3dn, the exact command would be:

withdraw bc1qjl8uwezzlech793lpnyuzy0h2cdkvxvh54v3dn 1000 click execute.

![Spark Withdraw](../img/SparkWalletWithdrawConsole.png)

Note that the address format needs to be SegWit, bech32 (starting with bc1).

Lightning Network Questions and Support

Community support for Lightning Network questions is pretty limited, since the protocol is fairly new.

If you’re facing a technical problem with your Lightning Network implementation, that’s not documented here you may want to ask questions in their respective communities.

LND Support

	[LND GitHub](https://github.com/lightningnetwork/lnd/issues)

	[Lightning Community on Slack](https://lightningcommunity.slack.com)

c-lightning Support

	[c-lightning GitHub](https://github.com/ElementsProject/lightning/issues)

	[c-lightning Telegram Group](https://t.me/lightningd)

	[c-lightning docs](https://lightning.readthedocs.io/)

 # Frequently Asked Questions and Common Issues

This document contains a Table of contents to all FAQ and common issues.

[General FAQ](./General.md)

General, non-technical questions about BTCPay. What it is, how it works, what are its features, why is it different and who can use it.

	[What is BTCPay Server?](./General.md#what-is-btcpay-server)

	[Why should I choose BTCPay over other processors?](./General.md#why-should-i-choose-btcpay-over-other-processors)

	[Why is everyone so excited about BTCPay?](./General.md#why-is-everyone-so-excited-about-btcpay)

	[Who can use BTCPay?](./General.md#who-can-use-btcpay)

	[How to install BTCPay?](./General.md#how-to-install-btcpay-server)

	[Where to find BTCPay video tutorials?](./General.md#where-to-find-btcpay-video-tutorials)

	[Do I need to have an online store to use BTCPay Server?](./General.md#do-i-need-to-have-an-online-store-to-use-btcpay-server)

	[Why can’t I just give my public address to a buyer?](./General.md#why-cant-i-just-give-my-bitcoin-address-to-a-buyer)

	[How does BTCPay create a new address for each invoice?](./General.md#how-does-btcpay-create-a-new-address-for-each-invoice)

	[Does BTCPay need my private key?](./General.md#does-btcpay-need-myprivate-key)

	[Does BTCPay Server support crypto to fiat conversion?](./General.md#does-btcpay-server-support-crypto-to-fiat-conversion)

	[What if I have a problem paying a BTCPay Server invoice?](./General.md#what-if-i-have-a-problem-paying-an-invoice)

	[What if I have a problem with a paid invoice?](./General.md#what-if-i-have-a-problem-with-a-paid-invoice)

	[Where can I get help and support?](./General.md#where-can-i-get-help-and-support)

	[How can I contribute to BTCPay?](./General.md#how-can-i-contribute-to-btcpay)

	[How can I use the BTCPay Server API?](./General.md#how-can-i-use-the-btcpay-server-api)

	[How can I backup my BTCPay Server?](./General.md#how-can-i-backup-my-btcpay-server)

	[How can I charge for using my BTCPay Server instance?](./General.md#how-can-i-charge-for-using-my-btcpay-server-instance)

[Deployment FAQ](./Deployment.md)

Questions and solutions to BTCPay installation.

[General Deployment FAQ](./Deployment.md#general-deployment-faq)

	[How much does it cost to run BTCPay Server?](./Deployment.md#how-much-does-it-cost-to-run-btcpay-server)

	[What are the minimal requirements for BTCPay?](./Deployment.md#what-are-the-minimal-requirements-for-btcpay)

	[What is the easiest method to deploy a self-hosted BTCPay Server?](./Deployment.md#what-is-the-easiest-method-to-deploy-a-self-hosted-btcpay-server)

	[How to choose a proper deployment method?](./Deployment.md#how-to-choose-a-proper-deployment-method)

	[Why do I need a VPS? Can’t I just run BTCPay on my home computer?](FAQ-Deployment.md#can-i-run-btcpay-on-my-home-computer)

	[Can I run BTCPay on my hardware?](./Deployment.md#can-i-run-btcpay-on-my-own-hardware)

	[Can I deploy on my existing VPS?](./Deployment.md#can-i-deploy-btcpay-on-my-existing-vps)

	[Are there free hosts where I can test?](./Deployment.md#are-there-free-hosts-where-i-can-test)

	[After initial deployment, I can’t register and I don’t have a login yet?](./Deployment.md#after-initial-deployment-i-can-t-register-and-i-don-t-have-a-login-yet)

	[How do I activate Tor on my BTCPay Server?](./Deployment.md#how-do-i-activate-tor-on-my-btcpay-server)

	[How do I disable Tor on my BTCPay Server?](./Deployment.md#how-do-i-disable-tor-on-my-btcpay-server)

	[Why activate Tor? Does it mean that nobody knows who I am?](./Deployment.md#why-activate-tor-does-it-mean-that-nobody-knows-who-i-am)

	[How to access the .onion address without clearnet?](./Deployment.md#how-to-access-the-onion-address-without-clearnet)

	[How can I modify or deactivate environment variables?](./Deployment.md#how-can-i-modify-or-deactivate-environment-variables)

	[How can I run BTCPay on testnet?](./Deployment.md#how-can-i-run-btcpay-on-testnet)

	[Can I start BTCPay only when I’m expecting a payment?](./Deployment.md#can-i-start-btcpay-only-when-i-m-expecting-a-payment)

	[Can I connect to my BTCPay Bitcoin P2P on port 8333?](./Deployment.md#can-i-connect-to-my-btcpay-bitcoin-p2p-on-port-8333)

	[How can I renew my SSL certificate?](./Deployment.md#how-can-i-renew-my-ssl-certificate)

	[Can I use an existing Nginx server as a reverse proxy with SSL termination?](./Deployment.md#can-i-use-an-existing-nginx-server-as-a-reverse-proxy-with-ssl-termination)

[Web Deployment FAQ](./Deployment.md#web-deployment-faq)

[Luna Node Web Deployment FAQ](./Deployment.md#luna-node-web-deployment-faq)

	[How to change domain name on my LunaNode BTCPay?](./Deployment.md#how-to-change-domain-name-on-my-lunanode-btcpay)

[Manual Deployment FAQ](./Deployment.md#manual-deployment)

	[How to manually install BTCPay on Ubuntu 18.04?](./Deployment.md#how-to-manually-install-btcpay-on-ubuntu-18-04)

	[How do I completely uninstall BTCPay from a linux environment (docker version)](./Deployment.md#how-do-i-completely-uninstall-btcpay-from-a-linux-environment-docker-version)

	[How to deploy BTCPay Server alongside existing Bitcoin full node?](./Deployment.md#how-to-deploy-btcpay-server-alongside-existing-bitcoin-node)

	[With the docker deployment, how to use a different volume for the data?](./Deployment.md#with-the-docker-deployment-how-to-use-a-different-volume-for-the-data)

	[Getting 500 nginx error on a local server https and for http (BTCPay is expecting you to access this website from)](./Deployment.md#cause-4-getting-500-nginx-error-on-a-local-server-https-and-for-http-btcpay-is-expecting-you-to-access-this-website-from)

	[Error: BTCPay is expecting you to access this website from…](./Deployment.md#cause-3-btcpay-is-expecting-you-to-access-this-website-from)

	[You access BTCPay Server over an unsecured network](./Deployment.md#cause-3-btcpay-is-expecting-you-to-access-this-website-from)

[Synchronization FAQ](./Synchronization.md)

Common questions and issues that may occur during the initial sync of BTCPay.

	[Why does BTCPay sync?](./Synchronization.md#why-does-btcpay-sync)

	[Can I skip/speed up the sync?](./Synchronization.md#can-i-skip-the-synchronization)

	[How do I know that the sync is finished?](./Synchronization.md#how-do-i-know-that-btcpay-synced-completely)

	[How can I check the block height of my bitcoin node?](./Synchronization.md#how-can-i-check-the-block-height-of-my-bitcoin-node)

	[BTCPay takes forever to synchronize](./Synchronization.md#btcpay-server-takes-forever-to-synchronize)

	[BTCPay Server keeps showing that my node is always starting](./Synchronization.md#btcpay-server-keeps-showing-that-my-node-is-always-starting)

	[I already have a synced full node, can I use it with BTCPay?](./Synchronization.md#im-running-a-full-node-and-have-a-synched-blockchain-can-btcpay-use-it-so-that-it-doesnt-have-to-do-a-full-sync)

	[How to enable Bitcoin node pruning?](./Synchronization.md#how-to-enable-bitcoin-node-pruning)

	[How to disable Bitcoin node pruning?](./Synchronization.md#how-to-disable-bitcoin-node-pruning)

[Integrations FAQ](./Integrations.md)

Questions about e-commerce and other integrations.

[Integrations General](./Integrations.md#integrations-general-faq)

	[What e-commerce integrations are available?](./Integrations.md#what-e-commerce-integrations-are-available)

	[Does BTCPay have a Shopify plugin?](./Integrations.md#does-btcpay-have-a-shopify-plugin)

	[Can I use BTCPay without an integration?](./Integrations.md#can-i-use-btcpay-without-an-integration)

[WooCommerce FAQ](./Integrations.md#woocommerce-faq-2)

	[How to configure order status in WooCommerce?](./Integrations.md#how-to-configure-order-status-in-woocommerce)

	[How to customize e-mail confirmations in WooCommerce?](./Integrations.md#how-to-customize-e-mail-confirmations-in-woocommerce)

	[Error: If you use an alternative order numbering system, please see class-wc-gateway-btcpay.php to apply a search filter](./Integrations.md#error-if-you-use-an-alternative-order-numbering-system-please-see-class-wc-gateway-btcpayphp-to-apply-a-search-filter)

[Server Settings FAQ](./ServerSettings.md)

Common problems and questions server admins have.

[Maintenance FAQ](./ServerSettings.md#maintainance)

	[How to update BTCPay Server?](./ServerSettings.md#how-to-update-btcpay-server)

	[How to restart BTCPay Server?](./ServerSettings.md#how-to-restart-btcpay-server)

	[How to SSH into my BTCPay running on VPS?](./ServerSettings.md#how-to-ssh-into-my-btcpay-running-on-vps)

	[How can I check my BTCPay Server version?](./ServerSettings.md#how-can-i-see-my-btcpay-version)

	[How can I check my BTCPay Server version via terminal?](./ServerSettings.md#how-can-i-check-my-btcpay-server-version-via-terminal)

	[What is BTCPay SSH key file](./ServerSettings.md#what-is-btcpay-ssh-key-file)

	[Forgot BTCPay Admin password](./ServerSettings.md#forgot-btcpay-admin-password)

	[How to add a new user by invite?](./ServerSettings.md#how-to-add-a-new-user-by-invite)

	[How to disable U2F and 2FA for a user?](./ServerSettings.md#how-to-disable-u2f-and-2fa-for-a-user)

	[How to configure SMTP settings in BTCPay?](./ServerSettings.md#how-to-configure-smtp-settings-in-btcpay)

	[Error: Maintenance feature requires access to SSH properly configured in BTCPayServer configuration](./ServerSettings.md#error-maintenance-feature-requires-access-to-SSH-properly-configured-in-btcpayserver-configuration)

	[Error: Your local changes to the following files would be overwritten by merge](./ServerSettings.md#error-your-local-changes-to-the-following-files-would-be-overwritten-by-merge)

	[Error: the BTCPAY_SSHKEYFILE variable is not set/ Unable to update](./ServerSettings.md#error-btcpay-sshkeyfile-is-not-set-when-running-the-docker-install-or-unable-to-update-through-server-settings-maintenance)

[Theme / Customization FAQ](./ServerSettings/#theme-customization)

	[How to customize my BTCPay theme style?](./ServerSettings.md#how-to-customize-my-btcpay-theme-style)

	[How to modify BTCPay the checkout page?](./ServerSettings.md#how-to-modify-the-checkout-page)

	[How to customize the POS app theme?](../Development/Theme.md#2-bootstrap-themes)

	[How to add Google Analytics code to BTCPay?](./ServerSettings.md#how-to-add-google-analytics-code-to-btcpay)

[Policies FAQ](./ServerSettings.md#policies)

	[How to allow registration on my BTCPay Server?](./ServerSettings.md#how-to-allow-registration-on-my-btcpay-server)

	[How to hide my BTCPay Server from Search Engines?](./ServerSettings.md#how-to-hide-my-btcpay-server-from-search-engines)

[Services FAQ](./ServerSettings.md#services)

	[How to remotely connect to my BTCPay full node?](./ServerSettings.md#how-to-remotely-connect-to-my-btcpay-full-node)

[Files FAQ](./ServerSettings.md#files)

	[How to upload files to BTCPay?](./ServerSettings.md#how-to-upload-files-to-btcpay)

[Stores FAQ](./Stores.md)

Store settings explained.

	[How to create a store in BTCPay?](./Stores.md#how-to-create-a-store-in-btcpay)

	[How many stores can I create?](./Stores.md#how-many-stores-can-i-create)

	[Why are invoices without payment showing as complete?](./Stores.md#why-are-invoices-without-payment-showing-as-complete)

	[Store General Settings](./Stores.md#store-general-settings)

	[Add network fee to invoice (vary with mining fees)?](./Stores.md#add-network-fee-to-invoice-vary-with-mining-fees)

	[Allow anyone to create invoice?](./Stores.md#allow-anyone-to-create-invoice)

	[Invoice expires if the full amount has not been paid after … minutes?](./Stores.md#invoice-expires-if-the-full-amount-has-not-been-paid-after-minutes)

	[Payment invalid if transactions fails to confirm … minutes after invoice expiration?](./Stores.md#payment-invalid-if-transactions-fails-to-confirm-minutes-after-invoice-expiration)

	[Consider the invoice confirmed when the payment transaction?](./Stores.md#consider-the-invoice-confirmed-when-the-payment-transaction)

	[Consider the invoice paid even if the paid amount is … % less than expected?](./Stores.md#consider-the-invoice-paid-even-if-the-paid-amount-is-less-than-expected)

	[How to disable email on invoices?](./Stores.md#how-to-disable-email-on-invoices)

	[How to denominate invoices in sats?](./Stores.md#how-to-denominate-invoices-in-sats)

	[How to collect additional buyer information?](./Stores.md#how-to-collect-additional-buyer-information)

	[How to redirect store invoices after payment?](./Stores.md#how-to-redirect-store-invoices-after-payment)

	[Can I delete invoices from BTCPay?](./Stores.md#can-i-delete-invoices-from-btcpay)

	[How to change the exchange rate provider for invoices?](./Stores.md#how-to-change-the-exchange-rate-provider-for-invoices)

	[Getting GetRatesAsync was called on coinaverage error](./Stores.md#getting-getratesasync-was-called-on-coinaverage-error)

[Wallet FAQ](./Wallet.md)

Here are some of the questions and problems about wallets in BTCPay.

	[What is BTCPay Server wallet?](./Wallet.md#what-is-btcpay-server-wallet)

	[How to set up my wallet with BTCPay Server?](./Wallet.md#how-to-set-up-my-wallet-with-btcpay-server)

	[Can I use a hardware wallet with BTCPay Server?](./Wallet.md#can-i-use-a-hardware-wallet-with-btcpay-server)

	[Do I have to use BTCPay Server wallet?](./Wallet.md#do-i-have-to-use-btcpay-server-wallet)

	[Why is sending a transaction using Trezor failing?](./Wallet.md#why-is-sending-a-transaction-using-trezor-failing)

	[Missing payments in wallet?](./Wallet.md#missing-payments-in-my-software-or-hardware-wallet)

	[What is a derivation scheme?](./Wallet.md#what-is-a-derivation-scheme)

	[What is a Replace-By-Fee (RBF) transaction?](./Wallet.md#what-is-a-replace-by-fee-rbf-transaction)

	[How to add custom labels and comments to transactions?](./Wallet.md#how-to-add-custom-labels-and-comments-to-transactions)

	[I don’t see Lightning network payments in BTCPay wallet?](./Wallet.md#i-dont-see-lightning-network-payments-in-btcpay-wallet)

	[Is there a mobile app for BTCPay Server wallet?](./Wallet.md#is-there-a-mobile-app-for-btcpay-server-wallet)

[Apps FAQ](./Apps.md)

Frequent questions about the applications in BTCPay.

	[What are the Apps in BTCPay?](./Apps.md#what-are-the-apps-in-btcpay)

	[Is there a limit on the number of Apps I can create?](./Apps.md#is-there-a-limit-on-the-number-of-apps-i-can-create)

	[Is there a Point of Sale feature in BTCPay?](./Apps.md#is-there-a-point-of-sale-feature-in-btcpay)

	[How can I use BTCPay in a physical store?](./Apps.md#how-can-i-use-btcpay-in-a-physical-store)

	[How to customize the appearance of POS in BTCPay?](./Apps.md#how-to-customize-the-appearance-of-Point-of-Sale-App-in-BTCPay)

	[What is a Payment Button?](./Apps.md#what-is-a-payment-button)

	[How to create a Pay Button with a custom amount?](./Apps.md#how-to-create-a-pay-button-with-a-custom-amount)

	[How to map a domain name to an app?](./Apps.md#how-to-map-a-domain-name-to-an-app)

	[How to redirect to another site after payment?](./Apps.md#how-to-redirect-to-another-site-after-payment)

	[How to integrate WooCommerce Store in BTCPay Crowdfund app?](./Apps.md#how-to-integrate-woocommerce-store-into-a-btcpay-crowdfund-app)

[Lightning Network FAQ](./LightningNetwork.md)

Lightning Network troubleshooting and common problems.

[Lightning Network General FAQ](./LightningNetwork.md#lightning-network-general-faq)

	[How many users can use Lightning Network in BTCPay?](./LightningNetwork.md#how-many-users-can-use-lightning-network-in-btcpay)

	[How to find node info and open a direct channel with a store using BTCPay?](./LightningNetwork.md#how-to-find-node-info-and-open-a-direct-channel-with-a-store-using-btcpay)

	[As a merchant, do I need to open direct channels?](./LightningNetwork.md#as-a-merchant-do-i-need-to-open-direct-channels)

	[How can I get inbound capacity to my node?](./LightningNetwork.md#how-can-i-get-inbound-capacity-to-my-node)

	[Previously installed BTCPay without Lightning, can I enable it?](./LightningNetwork.md#i-previously-installed-btcpayserver-without-lightning-can-i-enable-it)

	[Can I use a pruned node with LN in BTCPay?](./LightningNetwork.md#can-i-use-a-pruned-node-with-ln-in-btcpay)

	[Can I use my existing LN node with BTCPay?](./LightningNetwork.md#can-i-use-my-existing-ln-node-with-btcpay)

	[How to change from c-lightning to LND or vice-versa?](./LightningNetwork.md#how-to-change-from-c-lightning-to-lnd-or-vice-versa)

	[Switched Lightning Network implementation, getting “no payment available” error](./LightningNetwork.md#i-switched-lightning-network-implementation-but-getting-no-payment-available-error)

	[WARNING: The LIGHTNING_ALIAS variable is not set. Defaulting to a blank string” when starting container](./LightningNetwork.md#i-get-warning-the-lightning-alias-variable-is-not-set-defaulting-to-a-blank-string-when-starting-container)

	[How to display my Lightning Node information so that others can connect to me?](./LightningNetwork.md#how-to-display-my-lightning-node-information-so-that-others-can-connect-to-me)

	[Where can I find recovery seed backup for my Lightning Network wallet in BTCPay Server?](./LightningNetwork.md#where-can-i-find-recovery-seed-backup-for-my-lightning-network-wallet-in-btcpay-server)

	[How to disable on-chain payments and use LN payments only?](./LightningNetwork.md#how-to-disable-on-chain-payments-and-use-ln-payments-only)

	[Where can I get Lightning Network Support?](./LightningNetwork.md#lightning-network-questions-and-support)

	[How to see my Lightning Network version?](./LightningNetwork.md#how-to-see-my-lightning-network-version)

[Lightning Network (LND) FAQ](./LightningNetwork.md#lightning-network-lnd-faq)

	[How to restart my LND?](./LightningNetwork.md#how-to-restart-my-lnd)

	[How to see LND logs?](./LightningNetwork.md#how-to-see-lnd-logs)

	[What’s the default LND Directory in BTCPay?](./LightningNetwork.md#what-s-the-default-directory-of-lnd-in-btcpay)

	[Which macaroon needs to be provided for external nodes?](./LightningNetwork.md#which-macaroon-needs-to-be-provided-for-external-nodes)

	[LND connection issue - cannot get macaroon: root key with id 0 doesn’t exist](./LightningNetwork.md#lnd-connection-issues-after-an-update)

	[How to change LND Node alias](./LightningNetwork.md#how-to-change-my-LND-Node-alias)

	[How to edit lnd.conf](./LightningNetwork.md#how-to-edit-lndconf)

	[How to install ThunderHub](./LightningNetwork.md#how-to-install-thunderhub)

[Lightning Network (c-lightning) FAQ](./LightningNetwork.md#lightning-network-c-lightning-faq)

	[How to restart my c-lightning?](./LightningNetwork.md#how-to-restart-my-c-lightning)

	[How to announce an IPv6 address?](./LightningNetwork.md#how-to-announce-an-ipv6-address)

	[How to find an on-chain address in Spark?](./LightningNetwork.md#how-to-find-an-on-chain-address-in-spark)

	[How to withdraw funds from my on-chain Spark wallet?](./LightningNetwork.md#how-to-withdraw-funds-from-my-on-chain-spark-wallet)

[Altcoins FAQ](./Altcoin.md)

	[Which coins does BTCPay Server support?](./Altcoin.md#which-coins-does-btcpay-server-support)

	[Can an XYZ coin be added in BTCPay?](./Altcoin.md#can-an-xyz-coin-be-added-in-btcpay)

	[How to add an altcoin to BTCPay?](./Altcoin.md#how-to-add-an-altcoin-in-btcpay)

	[How to add an altcoin to an existing BTCPay deployment?](./Altcoin.md#how-to-add-an-altcoin-to-an-existing-btcpay-deployment)

	[How to remove a coin from BTCPay?](./Altcoin.md#how-to-remove-a-coin-from-btcpay)

 # Server Settings FAQ

This document covers all the questions and issues related to Server Settings.
These settings are only available to the server admin. Take a look at the [walkthrough page](../Walkthrough.md) to learn more.

[[toc]]

Maintenance

How to update BTCPay Server?

There are 2 ways to update your BTCPay Server:

	Updating in the user interface: Server Settings > Maintenance > Update.

![Updating BTCPay Server](../img/HowToUpdateBTCPayServer.png)

	Updating using SSH: Login into your virtual machine with ssh, then apply following commands:

`bash
sudo su -
cd btcpayserver-docker
btcpay-update.sh
`

How to restart BTCPay Server?

There are 2 ways to restart your BTCPay Server:

	Restarting in the user interface: Server Settings > Maintenance > Restart.

![Restarting BTCPay Server](../img/HowToRestartBTCPayServer.png)

	Restarting using SSH: Login into your virtual machine with ssh, then apply following commands:

`bash
sudo su -
cd btcpayserver-docker
btcpay-restart.sh
`

How to SSH into my BTCPay running on VPS?

Follow these instructions to SSH via domain or IP:

```
ssh domainuser@example.com (domain)
or
ssh domainuser@70.32.86.175 (IP)

domainuser@example.com’s password:
yourPassword
```
Press Enter

If this is your first time connecting to the server from this computer, you will see the following output.
```
The authenticity of host ‘example.com (70.32.86.175)’ can’t be established.
RSA key fingerprint is 3c:6d:5c:99:5d:b5:c6:25:5a:d3:78:8e:d2:f5:7a:01.
Are you sure you want to continue connecting (yes/no)?


yes

Or see this [LunaNode example](https://github.com/JeffVandrewJr/patron/blob/master/SSH.md) with PuTTY.

### How can I see my BTCPay version?

You can see your BTCPay version in the bottom right of the page footer when you’re logged in as a server admin.

Deployments using v1.0.5.7 and later will automatically receive notifications to alert when a new BTCPay Server version has been released.

![Version](../img/notifications/notification-version.png)

Note: This feature will automatically set the BTCPAY_UPDATEURL environment variable in the BTCPay Server container to make a single daily request to [this Github endpoint](https://api.github.com/repos/btcpayserver/btcpayserver/releases/latest). Server admins can disable these notifications by disabling the policy in Server Settings > Policies > Check releases on GitHub.

### How can I check my BTCPay Server version via terminal?

In the btcpayserver-docker folder: bitcoin-cli.sh getnetworkinfo

### What is BTCPay SSH key file?

BTCPay SSH key, enables users to update their server or quickly change the domain name from btcpay website, via the user interface.

### Forgot BTCPay Admin password?

First, register a new user on your BTCPay Server, by clicking “Register”, for example: “newadmin@example.com”.

If you can’t create a new user because registrations are disabled in your Server Settings > Policies, you need to reset the policies settings. Please skip this step if you can create a new user on the front-end home page using the register button. Run the following command (It also deletes any other server settings currently being used):

`bash
# In root
sudo su -
cd $BTCPAY_BASE_DIRECTORY/btcpayserver-docker/
# Re-open registrations
./btcpay-admin.sh reset-server-policy
`

Head back to your BTCPay Server and click on the “Register” button which should now be enabled. In case you don’t see the Register link in the menu, that’s probably because of the caching. Restart your btcpay with btcpay-restart.sh.

Next, add the newly registered user newadmin@example.com as an admin:

`bash
# Set new user as admin
./btcpay-admin.sh set-user-admin newadmin@example.com
`
Now you can access with newadmin@example.com as admin.

When you apply the changes, you’ll notice that the newly created user isn’t a member of any stores. In that case, [follow this guide](https://gist.github.com/justinmoon/8128e66fc11d90ae5732f2491570bfc5) to add the new user to all or certain stores.

### How to add a new user by invite?

Server admins can add new users by creating an invite link to share with them. This can allow admins to disable public registration on the server, or to invite specific users by clicking: Server Settings > Add User (do not provide password) > Create account

![Invite User](../img/InviteUser.png)

A shareable link will be displayed for the server admin to distribute. An email will be sent (if email is [configured on the server](#how-to-configure-smtp-settings-in-btcpay) to set the password. The new user will create a password upon first visit to the invite link.

### How to disable U2F and 2FA for a user?

Remove U2F and 2FA settings for a registered user, for example user@example.com with the following commands:

`bash
# In root
sudo su -
cd $BTCPAY_BASE_DIRECTORY/btcpayserver-docker/
# Disable U2F and 2FA
./btcpay-admin.sh disable-multifactor user@example.com
`

### How to configure SMTP settings in BTCPay?

SMTP can be configured in settings for each store. It can also be configured for the entire server if you have admin privileges.

Each e-mail provider has different configuration, so we can’t provide you with exact setup, but here’s the configuration for gmail:
`
SMTP Host: smtp.gmail.com
SMTP Port: 587
SSL Protocol: ON
TLS Protocol: ON
SMTP Username: (your Gmail username)
SMTP Password: (your Gmail password)
`
For gmail it’s important to allow access from less secure apps. To enable go to: Manage Your Google Account > Security > Allow Less Secure Apps (On). Also note Google may automatically turn off this setting if it’s not being used. If your smtp has stopped working, check this setting is not off.

If by any chance you have 2-step verification added to your gmail account, [visit this article](https://support.google.com/mail/answer/185833?hl=en).

Use the test email feature in BTCPay to verify your emails are being sent properly. If you are seeking a more reliable smtp service for your business needs, consider using a dedicated mail service like Mailgun.

Maintenance feature requires access to SSH properly configured in BTCPayServer configuration

### Error: Maintenance feature requires access to SSH properly configured in BTCPayServer configuration

Sometimes an issue with Docker can temporarily cause your BTCPay Server’s maintenance features to be misconfigured. This issue is typically fixed by restarting your BTCPay Server. Unfortunately when this error appears in the interface, the restart button will be disabled. You will need to [restart using ssh](FAQ-ServerSettings.md#how-to-restart-btcpay-server) to resolve the issue.

### Error: Your local changes to the following files would be overwritten by merge

Sometimes, an accidentally edited file can break the update mechanism with the following error:

`bash
error: Your local changes to the following files would be overwritten by merge:
`

To fix the this, [ssh into your server](#how-to-ssh-into-my-btcpay-running-on-vps) and run the following commands:

`bash
sudo su -
cd btcpayserver-docker
git reset --hard origin/master
`

### Error: BTCPAY_SSHKEYFILE is not set when running the docker install, or unable to update through Server Settings / Maintenance

You may see such the following message when you run your docker-compose (either via btcpay-up.sh or btcpay-setup.sh):

`bash
WARNING: The BTCPAY_SSHKEYFILE variable is not set. Defaulting to a blank string.
WARNING: The BTCPAY_SSHTRUSTEDFINGERPRINTS variable is not set. Defaulting to a blank string.
`

BTCPay Server requires SSH access, to allow you to perform the following tasks from the front-end:


	Updating the server


	Changing the domain name of the server




You can run the following command line to give access to BTCPay to your server via SSH.

`bash
sudo su -
cd $BTCPAY_BASE_DIRECTORY/btcpayserver-docker
git checkout master
# Setup SSH access via private key
ssh-keygen -t rsa -f /root/.ssh/id_rsa_btcpay -q -P "" -m PEM
echo "# Key used by BTCPay Server" >> /root/.ssh/authorized_keys
cat /root/.ssh/id_rsa_btcpay.pub >> /root/.ssh/authorized_keys
BTCPAY_HOST_SSHKEYFILE=/root/.ssh/id_rsa_btcpay
. ./btcpay-setup.sh -i
`

## Theme / Customization

### How to customize my BTCPay theme style?

There are two ways to customize the theme of your BTCPay.
The easy way is to choose or provide custom theme preferences in your BTCPay as explained in the [Theme documentation](../Development/Theme.md).

For advanced theme changes, you’ll most likely need to fork  BTCPay repository and apply desired design changes. Build and publish the docker image to Docker Hub. Set the BTCPAY_IMAGE environment variable to your docker image tag(export BTCPAY_IMAGE=”your custom btcpay docker image”) and run the setup (. ./btcpay-setup.sh -i) as usual from [BTCPay Docker](https://github.com/btcpayserver/btcpayserver-docker). Modify generated docker compose to use your custom docker image.

:::warning
A forked BTCPay Server will need to create a new image manually and follow these steps for EACH BTCPay update so it is advised to stick with the default setup and theme options.
::

### How to modify the checkout page?





You can easily change the appearance of your BTCPay’s checkout page by following the [instructions here](../Development/Theme.md#checkout-page-theme)

### How to add Google Analytics code to BTCPay?

You should be able to do what you want by injecting your GA code to ~/wwwroot/checkout/js/core.js. This might be the easiest way but you have to redo it every time you update BTCPay to the latest version. Then you won’t have the hassle of forking the code, deploying it manually. Every time there is an update. Just do the docker update and add the same lines to the .js file.

## Policies

### How to allow registration on my BTCPay Server?

To allow other users to register and use your server, in Server Settings > Policies enable registration. If you [configured SMTP properly](FAQ-ServerSettings.md#how-to-configure-smtp-settings-in-btcpay), you can request users to provide e-mail confirmation to prevent spam or bots from registering on your instance.

### How to hide my BTCPay Server from Search Engines?

Discouraging search engines from indexing your site in Server Settings > Policies, adds <meta name=”robots” content=”noindex”> to your server header, which informs search engines not to index your pages.

It is up to search engines to honor this request, and may take time for your pages to disappear completely. Unfortunately, the exact time is beyond our control, it depends on crawl bots of the particular search engine like Google.

## Services

### How to remotely connect to my BTCPay full node?

If you’re using an external wallet which allows BTC-P2P connection, you can easily connect it to your BTCPay full node. By doing this, you avoid leaking information to third-party servers and are solely relying on your own full node.
To connect to a compatible BTC-P2P wallet, go to Server Settings > Services > Full node P2P Reveal the QR code and scan it with a BTC-P2P compatible wallet, or input it by copy-pasting it.

![BTC-P2P](../img/BTC-P2P.png)

If you do not see Full node P2P in your Services, you probably have to [activate Tor on your server](FAQ-Deployment.md#how-do-i-activate-tor-on-my-btcpay-server).

## Files

### How to upload files to BTCPay?

To upload files to your BTCPay Server instance, first under Server Settings > Services, enable the External Storage feature and choose which storage service provider you would like to use. Next, go to Server Settings > Files to browse and upload local files. Depending on the limitations of your storage system, you may have difficulty uploading large files.




            

          

      

      

    

  

    
      
          
            
  # Stores FAQ

This page shows common issues and frequently asked questions about BTCPay Server stores.

[[toc]]

## How to create a store in BTCPay Server?

To create your first store, go to > Stores from the header menu and click “create a new store.”

## How many stores can I create?

There’s no limit on a number of stores you can create in BTCPay.

## Why are invoices without payment showing as complete?

When an invoice is created to receive a payment value of 0 (zero amount due) the invoice by definition, is already paid. The invoice will appear as complete as soon as it’s created.

The purpose of this type of invoice is typically for when a merchant would like to observe user interest in an event or giveaway using BTCPay Server invoices without requiring the user to provide funds. Another use case is for developers who are testing the invoice process allowing them to bypass providing actual funds to verify the software is working properly.

## Add network fee to invoice (vary with mining fees)?

Network fee (cost) is a feature in BTCPay which protects merchants from customers who pay the invoice partially. When an invoice is paid from many outputs, the fee for a merchant who needs to move those funds later will be higher.

For example, the customer created an invoice for 20$ and paid it partially, paying 1$ 20 times until the invoice is paid fully. Merchant now has a larger transaction which increases the mining cost in case the merchant decides to move those funds later. By default, BTCPay applies an additional network cost to the total invoice amount to cover that expense for the merchant.

BTCPay offers several options to customize this protection feature. You can apply a network fee :


	Only if the customer makes more than one payment for the invoice (In the above example, if the customer created an invoice for 20$ and paid 1$, total invoice due is now 19$ + the network fee. The network fee is applied after the first payment)


	On every payment (including the first payment, in our example, the total  will be 20$ + network fee right away, even on the first payment)


	Never add network fee (disables the network fee entirely)




The network fee in BTCPay is not the mining fee. The customers still need to pay for the miner’s fee.

The network cost is an optional feature. It’s enabled by default, but it’s entirely up to a merchant to enable or disable it. The customer sees the “network cost” at the checkout when they expand the invoice information.

While it protects from dust transactions, it can also reflect negatively on businesses if not communicated properly. Your customers may have additional questions and may think you’re overcharging them.

Please think twice about how this may affect your business and make sure to communicate it to your customers properly inside your store Terms of Service or through other means.

## Allow anyone to create invoice

You should enable this option if you want to allow the outside world to create invoices in your store. This option is only useful if you’re using the payment button or if you are issuing invoices via API or 3rd party HTML website. POS app is pre-authorised and does not need this enabled for a random visitor to open your POS store and create an invoice. If in doubt, don’t enable it as you can always enable it if needed.

## Invoice expires if the full amount has not been paid after … minutes

The invoice timer is set to 15 minutes by default. The timer is a protection mechanism against the volatility since it locks the cryptocurrency amount according to the crypto to fiat rates. If the customer does not pay the invoice within the defined period, the invoice is considered expired. The invoice is considered “paid” as soon as the transaction is visible on the blockchain (o-confirmations) but considered “complete” when it reaches the number of confirmations the merchant defined (usually, 1-6). The timer is customizable.

## Payment invalid if transactions fails to confirm … minutes after invoice expiration

If the customer pays the invoice, but it fails to get the defined number of confirmations within the set period, it is marked as “invalid.” The merchant can then decide whether to accept the invoice afterward manually or decline it and require additional payment from the customer. This is an additional protection mechanism against the volatility.

## Consider the invoice confirmed when the payment transaction

The invoice is considered “paid,” as soon as it’s visible on the blockchain. When the invoice reaches the defined number of confirmations, it is considered “confirmed.” Here you set the minimum amount of confirmations after which the invoice gets the “confirmed” status. The “completed” status is given when the invoice has at least 6 confirmations. Note this only applies to on-chain payments. Invoices paid via the Lightning Network immediately go to a completed state, as their confirmation is instant. In practice, as a merchant, you ship your product as soon as you see the invoice marked as completed or confirmed.

## Consider the invoice paid even if the paid amount is … % less than expected

In a situation where a customer uses an exchange wallet to pay directly for an invoice, the exchange takes a small amount of fee. This means that such invoice is not considered fully completed. The invoice gets status “paid partially.” If a merchant wants to accept underpaid invoices, you can set the percentage rate here.

## How to disable email on invoices

To disable the email requirement for your store’s invoices, go to Stores > Settings > Checkout Experience > uncheck ‘Requires a refund email’ box.

## How to denominate invoices in sats

To use Satoshis as the invoice currency unit, you can simply use SATS (e.g. instead of BTC).

Alternatively you can also use the Store > Settings > Checkout Experience > Display Lightning payment amounts in Satoshis option.

## How to redirect store invoices after payment?

To automatically redirect paid invoices for a store, enable the setting in: Stores > Settings > Checkout experience > check ‘Redirect invoice to redirect url automatically after paid’ box.

This setting is typically used for redirecting invoices made directly to the store, such as with a [Payment Button](../Apps.md#payment-button). After payment, the invoice would return to the original page where the payment button was embedded or to the redirect URL provided on the Edit Payment Button page.

When this feature is not enabled, the customer will be prompted in the invoice to return to the original payment page.

![Redirect Paid Store Invoices](../img/invoice/PaidInvoice.png)

To redirect to a specific URL in the Point of Sale app, use the [PoS Redirect](../FAQ/Apps.md#how-to-redirect-to-another-site-after-payment) instead.

## Can I delete invoices from BTCPay?

Invoices in BTCPay Server can’t be deleted, but can be archived.
To archive an invoice, select the one you would like to archive from the list of invoices and mark as archived from the actions dropdown. Or from the invoice details page click the Archive button in top right corner.
This action removes it from the Invoices page.

An invoice can be restored by clicking the Archived button or by using the archive search filter to display them. Find out more about archived invoices [here](../Invoices.md#archived-invoices).

## How to collect additional buyer information?

The Buyer information section of the invoice details page is only used for custom solutions such as integrations, like WooCommerce or API invoice creation. Currently there is no way to collect Buyer Information using the BTCPayServer interface.

## How to change the exchange rate provider for invoices?

The default fiat to cryptocurrency exchange rate provider used in your BTCPay invoices can be modified by navigating to your Store Settings > Rates > Preferred price source. There are several exchange rate provider options available. Each store may use different settings.

## Getting GetRatesAsync was called on coinaverage error

Coinaverage discontinued their free tier API. As a result the following error may appear:

`
GetRatesAsync was called on coinaverage when the rate is outdated. It should never happen, let BTCPayServer developers know about this.
`

The issue can be fixed by [selecting a different rate source provider](./Stores.md#how-to-change-the-exchange-rate-provider-for-invoices) in Stores > Settings > Rates, or by [updating your BTCPay Server](./ServerSettings.md#how-to-update-btcpay-server) if you’re running version 1.0.3.146 or older. The update will automatically replace Coinaverage with CoinGecko.



            

          

      

      

    

  

    
      
          
            
  # Synchronization FAQ

This document covers the most common questions and issues that may occur during BTCPay sync.

[[toc]]

## Why does BTCPay sync?

After deployment, your BTCPay Server needs to sync the entire blockchain and validate all the consensus rules. Depending on your machine specifications, bandwidth and number of altcoins you added, this process may take between 1-5 days.

It may seem tedious, but it’s a critical step of running your own full node and not having to trust or rely on anyone. Your node will not only download ~300GB of data (less if you’re using a pruned node) but also validate all the rules of the consensus. You can find more information about the importance of blockchain synchronization in [this video](https://www.youtube.com/watch?v=OrYDehC-8TU).

If you are only interested in learning about BTCPay Server i.e. simply [trying it out](../TryItOut.md) without deploying your own instance, you can avoid sync by using a [Third-Party host](../Deployment/ThirdPartyHosting.md).

## Can I skip the synchronization?

You can’t skip synchronization if you are deploying a BTCPay Server, but you can drastically decrease the time it takes. If you’re comfortable with using the command line, you can use FastSync to synchronize your node faster. Be sure to [read this FastSync document](https://github.com/btcpayserver/btcpayserver-docker/tree/master/contrib/FastSync) to understand the potential trust issues involved with this feature.

To use FastSync, make sure your deployment has a [pruning option enabled](#how-to-enable-bitcoin-node-pruning) by using an opt-save-storage environment variable, otherwise bitcoind will not be able to sync. First step is to [ssh into](./ServerSettings.md#how-to-ssh-into-my-btcpay-running-on-vps) your BTCPayServer instance and run the following commands:

`bash
sudo su -
cd $BTCPAY_BASE_DIRECTORY/btcpayserver-docker/
btcpay-down.sh
cd contrib/FastSync
./load-utxo-set.sh
# Once FastSync has completed
btcpay-up.sh
`

After FastSync is complete and you have brought back up your instance, refresh your BTCPay domain and wait for remaining blockchain synchronization. You can also follow [this video](https://youtube.com/watch?v=VNMnd-dX9Q8?t=1730).

If your FastSync returns You need to delete your Bitcoin Core wallet after you load the uxto set, or you find this error: Last wallet synchronisation goes beyond pruned data, see the cause of [BTCPay Server keeps showing that my node is always starting](#btcpay-server-keeps-showing-that-my-node-is-always-starting).

## How do I know that BTCPay synced completely?

When you do not see a pop-up message in the bottom right corner, which shows the sync progress, that means that your server is fully synced and you can [begin using it](../RegisterAccount.md).

If you want to check that your BTCPay Server Bitcoin node is synchronized with the most recent block in the Bitcoin blockchain, [check your node height](#how-can-i-check-the-block-height-of-my-bitcoin-node) matches the current block height using any blockchain explorer.

## How can I check the block height of my bitcoin node?

To verify the sync status of your Bitcoin node, you can use bitcoin-cli commands inside your server’s Bitcoin container. SSH into your server and navigate to the directory where you [view Bitcoin logs](../Troubleshooting.md#23-bitcoin-node-logs) run the command: bitcoin-cli.sh getblockcount to view the current block of your server’s Bitcoin node.

## BTCPay Server takes forever to synchronize

Synchronizing a Full Bitcoin node should take between 1 and 5 days. It should sync quickly at first and more slowly at the end.

If the node appears to not be syncing, verify:


	Not enough CPU


	Using swap memory




### Cause 1: Not enough CPU

We recommend 2 CPU while synchronizing; however some hosting providers throttle your CPU if you use too much.

Check with

`bash
sudo su -
docker stats
`

If you see more than 100% CPU usage, while being very slow to sync:

`
8e7ac41e6e2a        btcpayserver_bitcoind               100%               560.5MiB / 3.853GiB   14.20%              4.17
`

Then you need to scale up your machine specification.

If you see very low CPU usage (less than 10%) during synchronization:

`
8e7ac41e6e2a        btcpayserver_bitcoind               10%               560.5MiB / 3.853GiB   14.20%              4.17
`

Your hosting provider might throttle your CPU. Please make sure your host supports the high use of CPU for an extended period.

If they don’t allow it, shut down your server until they stop throttling you. Then you can limit the CPU via docker, and restart the server:

`bash
docker update btcpayserver_bitcoind --cpus ".8"
`

### Cause 2: Using swap memory

If you are synching and don’t have enough memory, your server may use swap memory to continue operating:

`bash
sudo su -
df -h
`

If you see swap memory usage:


	```bash
	total used free shared buff/cache available

Mem: 2.0G 2.0G 0M 66M 0G 0M
Swap: 1.0G 200M 800M
```

Then it means you need to scale up your server by adding more memory.

## BTCPay Server keeps showing that my node is always starting

Possible cause:


	You do not have enough RAM


	You do not have enough storage


	You accidentally disabled pruning


	Your bitcoin data directory is corrupted


	Your last wallet synchronisation goes beyond pruned data




### Cause 1: You do not have enough RAM

Check your RAM:

`bash
sudo su -
free -h
`

If you see that you have no free or very little available memory:


	```bash
	total used free shared buff/cache available

Mem: 2.0G 2.0G 0M 66M 0G 0M
Swap: 0B 0B 0B
```

Then you need more memory. If you have already synched your node, you can add some swap memory. If you haven’t, your server specs are too limited.

If you have already synched, you can add 2G of swap memory with:

`bash
fallocate -l 2G /mnt/swapfile
chmod 600 /mnt/swapfile
mkswap /mnt/swapfile
swapon /mnt/swapfile
echo "/mnt/swapfile   none    swap    sw    0   0" >> /etc/fstab
`

### Cause 2: You do not have enough storage

Check the storage of your machine:

`bash
sudo su -
df -h
`

If you see you don’t have any storage left (/dev/sda1 in my case)

`bash
Filesystem      Size  Used Avail Use% Mounted on
udev            2.0G     0  2.0G   0% /dev
tmpfs           395M   41M  354M  11% /run
/dev/sda1       125G  125G  0G   100% /
tmpfs           2.0G     0  2.0G   0% /dev/shm
tmpfs           5.0M     0  5.0M   0% /run/lock
tmpfs           2.0G     0  2.0G   0% /sys/fs/cgroup
/dev/sdb1       7.8G   18M  7.4G   1% /mnt
`

[Choose the docker fragment](https://docs.btcpayserver.org/Docker/#generated-docker-compose) for the amount of storage you aim to keep. Then [prune your node](https://docs.btcpayserver.org/Docker/#how-i-can-prune-my-nodes).

### Cause 3: You accidentally disabled pruning

If you have recently tried to modify your environment variables using the export BTCPAYGEN_ADDITIONAL_FRAGMENTS=”xyz” command to add an additional fragment, but forgot to include your current ones, you may have disabled pruning.

If you don’t have enough memory to store the entire Bitcoin blockchain and you don’t have an opt-save-storage listed when you [print the complete list of options](https://docs.btcpayserver.org/FAQ/Deployment/#how-can-i-modify-or-deactivate-environment-variables) that you are running, it is very likely you have disabled pruning.

You can verify by checking your Bitcoind logs:

`bash
sudo su -
cd btcpayserver-docker
docker logs --tail 100 btcpayserver_bitcoind
`

If you see:

`bash
Block files have previously been pruned.
You need to rebuild the database using -reindex to go back to unpruned mode.
This will redownload the entire blockchain.
Please restart with -reindex or -reindex-chainstate to recover.
`

You can simply [re-enable pruning](#how-to-enable-bitcoin-node-pruning) to solve the issue.

### Cause 4: Your bitcoin data directory is corrupted

Check the logs of your node:

`bash
sudo su -
docker logs --tail 10 btcpayserver_bitcoind
`

If you see:

`bash
Please restart with -reindex or -reindex-chainstate to recover.
`

Then your bitcoin data directory has been corrupted. It may be physical damage or failure of the hard drive.
To reindex your node:

`bash
btcpay-down.sh
# Delete 'blocks' and 'chainstate' folders
rm -rf /var/lib/docker/volumes/generated_bitcoin_datadir/_data/blocks
rm -rf /var/lib/docker/volumes/generated_bitcoin_datadir/_data/chainstate
btcpay-up.sh
`

### Cause 5: Your last wallet synchronisation goes beyond pruned data

This can happen if you use FastSync or import an already synched blockchain. It means that the bitcoin core wallet needs to be removed because it was created before the utxoset, likely because BTCPay Server started without the utxoset at the first boot. To verify this case, [check the bitcoind log](../Troubleshooting.md#2-1-btcpay-logs) for this:

`bash
Error: Prune: last wallet synchronisation goes beyond pruned data. You need to -reindex (download the whole blockchain again in case of pruned node)
`

If you see this error and agree to remove the wallet to finish syncing, use docker volume rm generated_bitcoin_wallet_datadir after you run btcpay-down.sh and before you run btcpay-up.sh
WARNING: Do not delete this wallet if you have any funds on it.

## I’m running a full node and have a synched blockchain, can BTCPay use it so that it doesn’t have to do a full sync?

Yes you can!  However, before you do that, you’ll want to stop bitcoind from updating docker’s volume for it, as that job will be taken over by BTCPay Server.

If you want to run BTCPay Server inside a docker-compose, and that you have the data directory (.bitcoin) of a fully synched node on your docker host, then you can reuse it easily for BTCPay Server.

To do that, follow the following steps :
* Do the normal setup according to [this instruction](https://docs.btcpayserver.org/Docker/). Note the opt-save-storage environment variable, which is used to enable various pruning levels. If you do not want to prune your exiting data directory, then omit the following line in your BTCPay docker deployment: export BTCPAYGEN_ADDITIONAL_FRAGMENTS=”opt-save-storage-s”.
* Once btcpay-setup.sh is over, turn down the docker compose with btcpay-down.sh.
* Login as root with sudo su -.
* Open the docker’s volume for bitcoind : cd /var/lib/docker/volumes/generated_bitcoin_datadir/, and check its content with ls -la. You should see only one directory named _data.
* Now remove the _data`directory : `rm -r _data. If for any reason you want to keep this directory and its content you can also rename it instead : mv _data/ _data.old/
* Now create a [symbolic link](https://www.cyberciti.biz/faq/creating-soft-link-or-symbolic-link/) between /var/lib/docker/volumes/generated_bitcoin_datadir/_data and your data directory (.bitcoin) on your host: ln -s path/to/.bitcoin /var/lib/docker/volumes/generated_bitcoin_datadir/_data
* Check that the link has been done with a ls -la
* Start your docker-compose again with btcpay-up.sh

Your BTCPay Server should now be fully synched.

If after this BTCPay Server keeps showing that your node is always starting, see the cause of [BTCPay Server keeps showing that my node is always starting](#btcpay-server-keeps-showing-that-my-node-is-always-starting).

## How to enable Bitcoin node pruning?

This will prune your Bitcoin full node to a maximum of 100GB (of blocks):

`bash
sudo su -
cd btcpayserver-docker
export BTCPAYGEN_ADDITIONAL_FRAGMENTS="opt-save-storage"
. ./btcpay-setup.sh -i
`

Other pruning options are [documented here](https://docs.btcpayserver.org/Docker/#generated-docker-compose). See [this example](./Deployment.md#how-can-i-modify-or-deactivate-environment-variables) for use with other additional fragments.

## How to disable Bitcoin node pruning?

To disable pruning of your Bitcoin node in BTCPay, first ensure you have enough memory to store the entire blockchain and BTCPayServer on your system. Then disable the opt-save-storage environment variable. See [this example](./Deployment.md#how-can-i-modify-or-deactivate-environment-variables) to view your fragment list and select only one for removal. The following example will remove all additional fragments:

`bash
export BTCPAYGEN_ADDITIONAL_FRAGMENTS=""
. ./btcpay-setup.sh -i
`

Then run the following commands to recreate a non-pruned Bitcoin node:

`bash
btcpay-down.sh
# Delete 'blocks' and 'chainstate' folders
rm -rf /var/lib/docker/volumes/generated_bitcoin_datadir/_data/blocks
rm -rf /var/lib/docker/volumes/generated_bitcoin_datadir/_data/chainstate
btcpay-up.sh
`



            

          

      

      

    

  

    
      
          
            
  # Wallet FAQ

This document contains frequently asked questions related to BTCPay Server’s [internal wallet](../Wallet.md).

[[toc]]

## What is BTCPay Server wallet?

BTCPay Server has an internal wallet which you can use to view incoming and outgoing associated Bitcoin transactions and spend your funds.

It works like any other wallet, but has enhanced privacy features (non-custodial, no third-parties, verified with your server’s dedicated full node, etc.) by default and also solves certain UX problems you may encounter when using an existing wallet with BTCPay Server. It also includes many other wallet features such as custom transaction labelling, blockchain explorer links, transaction confirmation status, etc. It can be connected with many different external wallet types and even server generated hot wallets. For these reasons, it’s recommended to use the internal wallet for the most flexible and best wallet experience in BTCPay Server.

For more information on how to use the built-in wallet [check this page](../Wallet.md). To use the internal wallet, you first need to [set up the wallet](../WalletSetup.md) with your BTCPay store.

## How to set up my wallet with BTCPay Server?

Your store’s wallet setup page should guide you completely step by step to setting up any kind of wallet with BTCPay Server. If you have more questions, check our in-depth documentation on [how to set up a wallet](../WalletSetup.md).

## Can I use a hardware wallet with BTCPay Server?

The internal wallet has a [built in hardware wallet integration](../HardwareWalletIntegration.md). You can use a supported hardware wallet with the [BTCPay wallet](../Wallet.md).

This means that you’re using a hardware wallet without leaking information to third-party apps or servers unlike the default software for the devices, since the wallet relies on the full node in your BTCPay.

## Do I have to use BTCPay Server wallet?

By default BTCPay Server only requires an extended public key. To receive payments to your BTCPay store, you provide an extended public key (xPub) which you can generate in an external (existing) wallet. You do not have to use the built in wallet at all, you can manage funds in your [existing wallet](../WalletSetup.md#use-an-existing-wallet) instead.

However, it’s recommended to use the built in wallet for funds management. The built in wallet not only improves your privacy by default, but also solves user-experience issues like [gap-limit](#missing-payments-in-my-software-or-hardware-wallet).

## Why is sending a transaction using Trezor failing?

If you are experiencing problems (such as “user refused” or unresponsive Trezor) while trying to send a (PSBT) transaction using the BTCPay [HWI (Vault)](../HardwareWalletIntegration.md) and your Trezor wallet, enable the Always include non-witness UTXO if available setting by expanding the Advanced Settings on the Send page.

## Missing payments in my software or hardware wallet

If you’re using an [existing software or a hardware wallet](../WalletSetup.md#use-an-existing-wallet) with your BTCPay Server, you may experience a discrepancy between balance in your BTCPay wallet and the external wallet’s web, desktop or mobile app. This discrepancy is usually related to a gap-limit issue.

### The gap limit problem

The majority of third party wallets are [light wallets](https://en.bitcoin.it/wiki/Lightweight_node), which share a node between many users. To prevent performance issues, both light and full node reliant wallets limit the amount (typically 20) of addresses without balance that they track on the blockchain. BTCPay Server generates a new address for every invoice.

With above in mind, after BTCPay Server generates 20 consecutive unpaid invoices, the external wallet stops fetching the transactions, assuming no new transactions occurred. Once 21st, 22nd, etc invoices are paid, your external wallet won’t show them.

On the other hand, internally, BTCPay Server wallet tracks any address it generates itself along with a much greater gap limit. It does not rely on a third-party and is able to always show a correct balance.

### The gap limit solution

It’s not easy to solve the gap limit problem. You have two options:


	Increase the gap limit in your existing (external) wallet


	Use internal BTCPay Server wallet




#### 1. Increasing the gap limit

If your [external/existing wallet](../WalletSetup.md#use-an-existing-wallet) allows gap-limit configuration, the easy fix is to increase it. However, majority of wallets do not allow this.

The only wallets that allow gap-limit configuration, that we’re aware of are [Electrum](../ElectrumWallet.md) and [Wasabi](../WasabiWallet.md)

Unfortunately, with any other wallet you’re likely to encounter a problem.

If you’d like to use an [external wallet](../WalletSetup.md#use-an-existing-wallet) to manage the funds, we recommend that you recover your existing wallet into one of following wallets and increase the gap limit:


	[Increasing the gap limit in Electrum](../ElectrumWallet.md#configuring-the-gap-limit-in-electrum)


	[Increasing the gap limit in Wasabi](../WasabiWallet.md#configuring-the-gap-limit-in-wasabi)




After you’ve increased the gap limit, the balance in your external wallet and BTCPay wallet should match. If they don’t, you may have set up your derivation scheme incorrectly.

#### 2. Use the internal wallet

For best user-experience and privacy, we recommend that you consider dropping external wallets and start using the [BTCPay Server internal wallet](../Wallet.md).

## What is a derivation scheme?

No matter [how you set up your wallet](../WalletSetup.md), BTCPay Server uses a derivation scheme to represent the destination of the funds received by your invoices. The destination of those funds will be your wallet, located by the extended public key that you provide.

Using different derivation schemes with your extended public key, you can also choose to create various receiving address types, shown in your store invoices.

|Address Type|  Example |
|:--|:–:|
|P2WPKH |       xpub… |
|P2SH-P2WPKH    | xpub…-[p2sh] |
|P2PKH  | xpub…-[legacy] |
|Multi-sig P2WSH        | 2-of-xpub1…-xpub2… |
|Multi-sig P2SH-P2WSH   | 2-of-xpub1…-xpub2…-[p2sh] |
|Multi-sig P2SH |       2-of-xpub1…-xpub2…-[legacy] |

:::tip
On top of the xPub extended public key formats shown above, BTCPay Server supports yPub and zPub formats. Please note that these will be converted to xPub once the wallet setup is completed. This has no effect on how you receive or send funds.
::

## What is a Replace-By-Fee (RBF) transaction?





A Replace-By-Fee (RBF) transaction is a feature of the Bitcoin protocol. Learn more about what it is, why it happens and the different types of RBF [here](https://bitcoin.stackexchange.com/a/54457/85016).

RBF capability is by default randomly enabled/disabled between transactions when using the BTCPay Server internal wallet, for enhanced privacy. In order to ensure it is enabled, or to disable it, see the advanced options of the BTCPay Server [internal wallet](../Wallet.md#rbf-replace-by-fee).

## How to add custom labels and comments to transactions?

In addition to the [automatic labels](../Wallet.md#transaction-labels), you can easily create your own custom transaction labels. Labels can be used for filtering transactions in the wallet view. You can also add individual comments to transactions to leave a note or description about the payment.

![Custom Transaction Labels](../img/wallet/WalletTxComment.png)

## I don’t see Lightning network payments in BTCPay wallet?

The [Lightning Network](../LightningNetwork.md) and the BTCPay Server [wallet](../Wallet.md) are different concepts. The internal BTCPay Server wallet only shows on-chain payments.

In the future they may become unified but for the time being, to manage your Lightning Network funds, use Ride the Lightning, ThunderHub, an externally connected Lightning wallet (Zeus, Zap, Spark, etc), or the Command Line Interface (CLI).

## Is there a mobile app for BTCPay Server wallet?

BTCPay Server is a web app (not a mobile app) and may be viewed using any device that can display a web browser. There are mobile apps which allow you to connect to your BTCPay Server Lightning node (Zeus, Zap, Spark, etc).

You can also use mobile apps to connect to your Bitcoin full node using either P2P or RPC. If you are on iOS you can easily connect to your Bitcoin full node using Fully Noded.

To connect your BTCPay node to Fully Noded:



	Download Fully Noded from the App store.


	In BTCPay, go to Server Settings > Services and click on the Full Node RPC.


	Open your Fully Noded app, Quick Connect QR.


	Scan the QR code displayed on your BTCPay.


	Your Bitcoin full node is now connected to Fully Noded.







Here are some node statuses and network information you can easily monitor from your Fully Noded:

![Fully Noded](../img/FullyNoded.png)



            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Read the Docs
        


      


    
  

_static/file.png





_static/minus.png





_static/plus.png





